Реле времени: принцип работы, схема подключения и рекомендации по настройке

Схема подключения магнитного пускателя от А до Я — советы экспертов по выбору и пошаговая инструкция по монтажу и подключению (145 фото и видео)

Подача электропитания на двигатели осуществляется либо через контактор, либо через магнитный пускатель. По выполняемым функциям эти устройства очень схожи между собой, и нередко в прайс-листах их даже путают. Между ними, тем не менее, существуют и серьезные различия. Виды магнитных пускателей, с фото и примерами, а также схема их подключения будут разобраны в рамках статьи.

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Контакторы нередко изготавливаются без корпуса, поэтому в процессе эксплуатации для них необходимо предусмотреть защитный кожух, предохраняющий его от влаги и загрязнения, и поражения людей током.

Как работает пускатель

Главными частями прибора являются индуктивная катушка и магнитопровод, состоящий из статической и динамической частей Ш-образной формы. Они расположены выводами один к  другому. Стационарная часть закреплена на корпусе, а подвижная – не закреплена. Внизу магнитопровода в специальную прорезь вводится катушка индуктивности.

В зависимости от ее параметров, меняется номинальное напряжение работы устройства – от 12 до 380 вольт. Вверху магнитопровода находится две пары контактов – статичные и динамичные.

Когда питания нет, то пружинка удерживает контакты разомкнутыми. Когда питание появляется, в катушке наводится магнитное поле, и верхний сердечник притягивается к нижнему. Контакты в результате замыкаются. После снятия питания, исчезает и электромагнитное поле, а пружина разжимает контакты.

Устройство может работать от источника постоянного тока, и при одно- и трехфазном переменном токе, главное, чтобы его значения не превышали номинал, указанный заводом-изготовителем.

Сеть на 220 вольт

При питании от сети 220 вольт с одной фазой, подключение осуществляется через выводы, которые, как правило, обозначают А1 и А2. Расположены они в верху корпуса пускателя. При подсоединении к ним провода с вилкой, прибор включается в сеть. На выводы, маркированные L1, L2, L3 подается любое напряжение, снимаемое с контактов Т1, Т2 и Т3.

Ноль и фазу при подсоединении к устройству возможно спокойно перебрасывать, это не принципиально. Обычно питание подается через датчик температуры или степени освещения, например, при подсоединении пускателя к автономному отоплению или уличному освещению.

Кнопки «пуск» и «стоп»

При запуске и выключении двигателя при помощи пускателя удобно подключение устройства с кнопками, включенными последовательно с прибором.

Чтобы по окончанию нажатия на кнопку «пуск» работа двигателя не прекратилась, в цепь вводят самоподхват за счет запараллеленных с «пуском» выводов. Благодаря им двигатель работает после того, как на «пуск» уже не нажимают, до того момента, пока не нажмут на кнопку остановки.

На двигатель подают напряжение через любой маркированный буквой L контакт, и снимают его с соответствующего контакта под литерой Т. Данная схема подключения справедлива для однофазной сети.

Трехфазная сеть на 380 В

При подключении к трехфазной сети, задействуется три группы контактов L и Т. Одна из фаз подключается к контакту А1 или А2, ко второму из них подсоединяют «ноль».  Для защиты асинхронного двигателя от перегрева в цепь вводится тепловое реле. Больше никаких принципиальных отличий в подключении нет.

Технические характеристики

Параметр
Значение
Номинальное рабочее напряжение 220V
Частота питающей сети 50/60Hz
Сохраняет работоспособность, при питающем напряжении в пределах 180V-250V
Потребляемая мощность реле не более 2VA
Допустимый ток переключающего контакта, при активной нагрузке 16А
Допустимый ток переключающего контакта, при реактивной нагрузке
Минимальный шаг программирования 1 минута
Максимальный шаг программирования 168 часов
Число программ включения/отключения 16 циклов
Механическая износостойкость, циклов вкл/откл 10⁷
Электрическая износостойкость, циклов вкл/откл 10⁵
Время сохранения данных программирования, при отключении питания до 150 часов
Точность хода часов в течении суток, при температуре +25°С ≤1 секунда
Габаритные размеры (ВхШхГ), мм 86,5х36х65,5
Диапазон рабочих температур, °С -10°С~+40°С
Относительная влажность 35~85%

Крепление на DIN-рейку (занимает два модуля типа S), размером как двухфазный автомат.Эксплуатировать в закрытом помещении с искусственным регулированием вентиляции и отопления.

Область применения устройств

Таймеры используются во многих устройствах, окружающих современного человека. Зачастую, в жизни, требуется автоматизация циклов запуска и остановки различного оборудования.

Схема подключения реле времени настолько проста, что позволяет применять такой контроллер работы в широком спектре бытовой и производственной аппаратуры, запуская или выключая оборудование через определенные периоды. Примерами использования служат стиральные машины, микроволновки, станки, светофоры, уличное освещение, системы полива и управления отоплением дома. Современное реле времени

Реле времени применяются настолько давно, что даже информации о первом инженере, введшим такие функции в свое оборудование, найти не удалось. Первое упоминание и попытка разделения систем контроля времени работы по принципу действия была предпринята в 1958 году, в книге В. Большова «Электронные реле времени».

Показательно, что даже тогда необходимость периодического запуска и отключения оборудования была принято за данность. В книге предлагалось разделить таймеры на часовые, воздушные, электронные и электромагнитные, от вида механизма функционирования. Реле времени, использовавшиеся в СССР

В современной жизни, отключающие и контролирующие питание оборудования таймеры, а это другое название такого прибора, используются повсеместно, как для управления производственными процессами, так и бытовой электроникой.

Особенно важны реле времени в системах «умного дома», в которых они отмеряют временные промежутки и контролируют те или иные процессы. Самый простой пример – автоматический свет в подъездах жилых домов. Датчик, при обнаружении движения дает сигнал на запуск таймера, который зажигает освещение. Если длительный период нет сигнала от сенсора, срабатывает реле времени и свет гаснет. Одна из схем подключения реле времени к освещению подъезда

Это интересно: Независимый расцепитель или реле напряжения — что лучше выбрать

Схемы различных реле времени

Существуют разные варианты исполнения реле времени, схема каждого вида имеет свои особенности. Таймеры можно изготовить самостоятельно. Перед тем как сделать реле времени своими руками, необходимо изучить его устройство. Схемы простых реле времени:

  • на транзисторах;
  • на микросхемах;
  • для выходного питания 220 В.

Опишем каждую из них более подробно.

Схема на транзисторах

Необходимые радиодетали:

  1. Транзистор КТ 3102 (или КТ 315) — 2 шт.
  2. Конденсатор.
  3. Резистор номиналом 100 кОм (R1). Также понадобится еще 2 резистора (R2 и R3), сопротивление которых будет подбираться вместе с емкостью в зависимости от времени срабатывания таймера.
  4. Кнопка.

При подключении схемы к источнику питания начнет заряжаться конденсатор через резисторы R2 и R3 и эммитер транзистора. Последний откроется, поэтому на сопротивлении будет падать напряжение. В результате откроется второй транзистор, что приведет к срабатыванию электромагнитного реле.

При заряде емкости ток будет уменьшаться. Это вызовет снижение эммитерного тока и падения напряжения на сопротивлении до того уровня, которое приведет к закрытию транзисторов и отпускания реле. Чтобы запустить таймер заново, потребуется кратковременное нажатие кнопки, которое вызовет полную разрядку емкости.

Для увеличения временной задержки используют схему на полевом транзисторе с изолированным затвором.

На базе микросхем

Применение микросхем уберет необходимость разряжать конденсатор и подбирать номиналы радиодеталей для выставления необходимого времени срабатывания.

Необходимые электронные компоненты для реле времени на 12 вольт:

  • резисторы номиналом 100 Ом, 100 кОм, 510 кОм;
  • диод 1N4148;
  • емкость на 4700 мкФ и 16 В;
  • кнопка;
  • микросхема TL 431.

Положительный полюс источника питания должен соединяться с кнопкой, параллельно к которой подключен один контакт реле. Последний также подключается к резистору 100 Ом. С другой стороны резистор соединен с сопротивлениями на 510 и на 100 кОм. Один из выводов последнего идет на микросхему. Второй вывод микросхемы соединен с резистором на 510 кОм, а третий — с диодом. К полупроводниковому устройству подключается второй контакт реле, которое соединено с исполняющим устройством. Отрицательный полюс источника питания связан с сопротивлением на 510 кОм.

Под питание на выходе 220 В

Две вышеописанные схемы рассчитаны на напряжение 12 В, т. е. не подходят для мощных нагрузок. Устранить этот недостаток допустимо с помощью магнитного пускателя, установленного на выходе.

Если в качестве нагрузки выступает маломощное устройство (бытовое освещение, вентилятор, трубчатый электрический нагреватель), то можно обойтись без магнитного пускателя. Роль преобразователя напряжения выполнят диодный мост и тиристор. Необходимые детали:

  1. Диоды, рассчитанные на ток больше 1 А и обратное напряжение не выше 400 В, — 4 шт.
  2. Тиристор ВТ 151 — 1 шт.
  3. Емкость на 470 нФ — 1 шт.
  4. Резисторы: на 4300 кОм — 1шт, на 200 Ом — 1 шт., регулируемый на 1500 Ом — 1 шт.
  5. Выключатель.

К питанию 220 В подключается контакт диодного моста и выключатель. Второй контакт моста соединен с выключателем. Параллельно к диодному мосту подключается тиристор. Тиристор соединяется с диодом и сопротивлениями на 200, на 1500 Ом. Вторые выводы диода и резистора (200 Ом) идут на конденсатор. Параллельно последнему подключено сопротивление на 4300 кОм. Но необходимо помнить, что данное устройство не используется для мощных нагрузок.

Читайте далее:

Что такое делитель напряжения и как его рассчитать?

Основные виды и принцип работы реле времени

Как определить полярность электролитических конденсаторов, где плюс и минус?

Принцип работы и схема подключения теплового реле

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

Конструкция реле

Основным элементом реле является фотодатчик, в схемах могут применяться фоторезисторы, диоды, транзисторы, фотоэлектрические элементы. При изменении освещенности на фотоэлементе соответственно изменяются и его свойства, такие как сопротивление, состояния P-N перехода в диодах и транзисторах, а также напряжения на контактах фоточувствительного элемента. Далее сигнал усиливается и происходит переключение силового элемента, коммутирующего нагрузку. В качестве выходных управляющих элементов используют реле или симисторы.

Почти все покупные элементы собраны по схожему принципу и имеют два входа и два выхода. На вход подается сетевое напряжение 220 Вольт, которое, в зависимости от установленных параметров, появляется и на выходе. Иногда фотореле имеет всего 3 провода. Тогда ноль – общий, на один провод подается фаза, и при нужной освещенности она соединяется с оставшимся проводом.

При подключении фотореле необходимо ознакомится с инструкцией, обратить особое внимание на максимальную мощность подключаемой нагрузки, тип ламп освещения (накаливания, газоразрядные, светодиодные лампочки)

Важно знать, что реле освещения с тиристорным выходом не смогут работать с энергосберегающими лампами, а также с некоторыми видами диммеров из-за конструктивных особенностей. Этот нюанс необходимо учитывать, чтобы не повредить оборудование. Этот нюанс необходимо учитывать, чтобы не повредить оборудование

Этот нюанс необходимо учитывать, чтобы не повредить оборудование.

Давайте рассмотрим несколько схем для самостоятельной сборки сумеречного выключателя в домашних условиях. Для примера разберем, как сделать симисторный ночник с фотоэлементом.

Схемы подключения магнитного пускателя.

Первая, классическая схема, предназначена для обычного пуска электродвигателя: кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Причем вместо двигателя Вы можете подключать любую нагрузку, например, мощный ТЭН.

Для удобства понимания схема разделена на две части: силовая часть и цепи управления.

Силовая часть запитывается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В силовую часть входит: трехполюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный эл. двигатель М.

Цепь управления получает питание от фазы «А». В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, включенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на контакт №3 кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах. Схема готова к работе.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на эл. двигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО. На нижнем рисунке стрелкой показано движение фазы «А».

А если не будет самоподхвата, придется все время держать нажатой кнопку «Пуск» пока будет работать эл. двигатель или любая другая нагрузка, питающаяся от магнитного пускателя.

Чтобы отключить эл. двигатель достаточно нажать кнопку «Стоп»: цепь разорвется, управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель от трехфазного питающего напряжения.

А теперь рассмотрим монтажную схему цепи управления пускателем. Здесь все практически так же, как и на принципиальной схеме, за небольшим исключением реализации самоподхвата.

Чтобы не тянуть лишний провод на кнопку «Пуск», ставится перемычка между выводом катушки и одним из ближних вспомогательных контактов: в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на контакт №3 кнопки «Пуск».

Ну вот, мы с Вами и разобрали простую классическую схему подключения магнитного пускателя. Также на одном пускателе можно собрать схему автоматического ввода резерва (АВР), которая предназначена для обеспечения бесперебойного электроснабжения потребителей электроэнергией.

Ну а если остались вопросы или сомнения по работе пускателя, то посмотрите видеоролик, из которого Вы дополнительно подчерпнете нужную информацию.

Следующая схема будет немного сложнее этой, так как в ней будут задействованы два магнитных пускателя и три кнопки и называется эта схема реверсивной. При помощи такой схемы можно будет, например, вращать двигатель влево – вправо, поднимать и опускать лебедку.

Приборы с механической шкалой

Одним из приборов, который имеет механическую шкалу, является бытовой таймер. Работает он от обычной розетки. Такой прибор позволяет управлять домашней техникой в определенном диапазоне времени. В нем установлено «розеточное» реле, которое ограничено суточным циклом срабатывания.

Для использования суточного таймера его нужно настроить:

  • Приподнять все элементы, которые располагаются по дисковой окружности.
  • Опустить все элементы, которые отвечают за настройку времени.
  • Прокручивая диск, установить его на текущий промежуток времени.

К примеру, если элементы опущены на шкале, отмеченной цифрами 9 и 14, то нагрузка активируется в 9 часов утра и будет выключена в 14:00. За сутки можно создать до 48 включений аппарата.

Для этого нужно активировать кнопку, которая находится на боковой части корпуса. Если ее запустить, таймер включится в срочном режиме, даже если он был включен.

Самый простой таймер 12В в домашних условиях

Наиболее простое решение — это реле времени 12 вольт. Такое реле может быть запитано от стандартного блока питания на 12v, каких очень много продается в различных магазинах.

На рисунке ниже приведена схема устройства включения и автоматического выключения осветительной сети, собранная на одном счетчике интегрального типа К561ИЕ16.

Рисунок. Вариант схемы 12v реле, при подаче питания включающего нагрузку на 3 минуты.

Данная схема интересная тем, что в качестве генератора тактирующих импульсов выступает мигающий светодиод VD1. Частота его мерцаний составляет 1,4 Гц. Если светодиод конкретно такой марки найти не удастся, то можно использовать подобный.

Рассмотрим исходное состояние срабатывания, в момент подачи питания 12v. В начальный момент времени конденсатор С1 полностью заряжается через резистор R2. На выводе под №11 появляется лог.1, делающий данный элемент обнуленным.

Транзистор, подсоединенный к выходу интегрального счетчика, открывается и подает напряжение 12В на катушку реле, через силовые контакты которого замыкается цепь включения нагрузки.

Дальнейший принцип действия схемы, работающей на напряжении 12В, состоит в считывании импульсов, поступающих с индикатора VD1 с частотой 1,4 Гц на контакт №10 счетчика DD1. С каждым снижением уровня поступающего сигнала происходит, так сказать, приращение значения счетного элемента.

При поступлении 256 импульса (это равняется 183 секундам или 3 минутам) на контакте №12 появляется лог. 1. Такой сигнал является командой для закрывания транзистора VT1 и прерывания цепи подключения нагрузки, через контактную систему реле.

Одновременно с этим, лог.1 с вывода под №12 поступает через диод VD2 на тактовую ногу C элемента DD1. Этот сигнал блокирует в дальнейшем возможность поступления тактовых импульсов, таймер срабатывать больше не будет, вплоть до пересброса питания 12В.

Исходные параметры для таймера срабатывания задаются разными способами подсоединения транзистора VT1 и диода VD3, указанных на схеме.

Немного преобразив такое устройство можно сделать схему, имеющую обратный принцип действия. Транзистор КТ814А следует поменять на другой тип — КТ815А, эмиттер подключить к общему проводу, коллектор к первому контакту реле. Второй контакт реле следует подключить к напряжению питания 12В.

Рисунок. Вариант схемы 12v реле, включающего нагрузку через 3 минуты после подачи питания.

Теперь после подачи питания реле будет отключено, а открывающий реле управляющий импульс в виде лог.1 выхода 12 элемента DD1 будет открывать транзистор и подавать на катушку напряжение 12В. После чего, через силовые контакты будет происходить подключение нагрузки к электрической сети.

Данный вариант таймера, функционирующий от напряжения 12В, на отрезке времени 3 минуты будет держать нагрузку в отключенном состоянии, а затем подключит её.

При изготовлении схемы, не забудьте расположить конденсатор ёмкостью 0.1 мкФ, на схеме имеющий обзначение C3 и напряжением 50В как можно ближе к питающим выводам микросхемы, иначе счетчик будет часто сбоить и время выдержки реле будет иногда меньше, чем должно быть.

В частности, это программирование времени выдержки. Применив, к примеру, такой DIP-переключатель как показано на рисунке, вы можете соединить одни контакты переключателей с выходами счетчика DD1, а вторые контакты объединить вместе и подключить к точке соединения элементов VD2 и R3.

Таким образом, с помощью микропереключателей вы сможете программировать время выдержки реле.

Подключение точки соединения элементов VD2 и R3 к различным выходам DD1 изменит время выдержки следующим образом:

Номер ноги счётчика Номер разряда счётчика Время выдержки
7 3 6 сек
5 4 11 сек
4 5 23 сек
6 6 45 сек
13 7 1.5 мин
12 8 3 мин
14 9 6 мин 6 сек
15 10 12 мин 11 сек
1 11 24 мин 22 сек
2 12 48 мин 46 сек
3 13 1 час 37 мин 32 сек

Программируемые цифровые реле

Появившиеся, в середине 90-х годов, pic-контроллеры (PeripheralInterfaceController), произвели революцию в схемотехнике. Одна микросхема с разными прошивками меняла свою функциональность и заменяла собой сразу целые блоки элементов.

В этой схеме роль основных элементов реле времени выполняет 12-битный контроллер PIC12F629. В зависимости от прошивки чипа, время задержки включения и выключения может варьироваться от долей секунды  до нескольких часов. Интервал задается кнопкой B1 Taster. Четыре светодиода указывают на состояние таймера: активное, неактивное, режим программирования.

Но устройства, в которых используются pic-контроллеры имеют существенный недостаток. Чип является лишь полуфабрикатом. Для его правильной работы понадобится написать программу действий на языке MPLAB IDE и прошить ее в памяти микросхемы. Для этого придется приобрести программатор. Хотя в продаже есть уже готовые наборы с прошитыми контроллерами для самостоятельного изготовления реле времени.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Принцип работы реле времени

Общий принцип работы реле времени заключается в формировании временной задержки на включение, выключение или переключение управляющих групп контактов. Реализация задержки зависит от конструктивных особенностей устройства. Общие различия в реле разных типов состоит в коммутации исполнительной части. По этому признаку различают две группы устройств реле:

  • с задержкой выключения;
  • с задержкой включения.

Многие реле позволяют осуществлять смену типа коммутации или имеют оба варианта.

Принцип отсчета времени и управления контактами зависит от конструкции реле, но общий алгоритм работы следующий:

  • при запуске срабатывает контактная группа, организованная в соответствии с типом коммутации (для реле времени с задержкой выключения контакты замыкаются);
  • одновременно взводится механизм задержки времени (запускается тактовый генератор в электронных устройствах);
  • по истечении заданного интервала контактная группа меняет свое состояние на противоположное.

Трехпозиционное реле отличается более сложным алгоритмом работы. Последовательность работы такова:

  1. Цепь разомкнута.
  2. Пуск. Цепь замыкается, начитается отсчет.
  3. Отсчет закончен. Цепь замкнута.

В цикличных устройствах перечисленная последовательность повторяется многократно.

Запуск отсчета осуществляется вручную или автоматически непосредственным замыканием контактов подачи питания или через электромагнит, воздействующий на механизм.

Реле времени с задержкой включения работает аналогично.

Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector