Как пользоваться мегаомметром, измерение изоляции

Содержание:

Юридическую силу имеют документы выданные только лицензированной электролабораторией и только после проведения реального исследования объекта.

Большое доверие вызывает компания, в которой имеется свой полный штат сотрудников электроизмерительной лаборатории и парк приборов необходимых для проверки электрики. Привлечение не обладающих должным опытом лиц для оказания услуги замера сопротивления изоляции приводит к снижению качества работ и не нужным рискам для Заказчика.

Компания ТМ-Электро обладает своим полным парком электроизмерительного оборудования для проведения любых измерений и испытаний, в штате компании только профессиональные сотрудники, постоянно повышающие свою квалификацию, имеющие группы допуска и все необходимые разрешения и свидетельства. Гарантируем точное соблюдение сроков и условия договора. Грамотно составим Технический отчет и дадим рекомендации. В случае необходимости предоставим свою электромонтажную бригаду.

Измерение сопротивления изоляции является, пожалуй, самым необходимым лабораторным испытанием. В Техническом отчете – Протокол №3. Если говорить кратко, то это измерение нужно для проверки состояния изоляции проводов и кабелей. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром или современным электронным оборудованием на напряжение 2500 В в течение одной минуты. Показатели сопротивления изоляции должны быть не менее 0,5 МОм. Полученные данные заносятся в журнал протокола с соответствующей пометкой “соответствует” или “не соответствует”.

При несоответствии нормативным значениям кабельную трассу рекомендуется заменить.

Очень часто изоляция кабеля повреждается при выполнении электромонтажных работ, при протаскивании через гильзы, отверстия с острой кромкой, при общестроительных работах (например, шурупом, во время крепления гипсокартона, плохо заизолированы кабельные муфты в земле) и т.д. В этих случаях очень помогут измерения сопротивления изоляции при выполнении комплекса приемо-сдаточных испытаний. Своевременно обнаруженный дефект проще устранить.

Периодичность проведения испытаний, обычно 1 раз в 3 года. Школьные и дошкольные учреждения 1 раз в год. По Нормативной документации Правительства г. Москвы изоляция бытовых стационарных электроплит измеряется не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 МОм.

Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. Проверка состояния таких цепей, провода, кабеля, электроприборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год!

Стоит напомнить, что работы связанные с напряжением должен проводить только подготовленный технический персонал, прошедший необходимое обучение, получивший соответствующие удостоверения с правом проведения измерительных работ. Все испытания проводятся правильно откалиброванным оборудованием, прошедшим ежегодную поверку в сертифицированном центре.

Какие бывают измерения сопротивления изоляции:

Лабораторные измерения проводятся c определенной периодичностью, в случае:

  • Приемо-сдаточные испытания;
  • Выполняются после того, как завершены все электромонтажные мероприятия (новое строительство или реконструкция).
  • Эксплуатационные испытания;
  • Проводятся на промышленных или торговых объектах в соответствии с требованиями пожарного надзора, Ростехнадзора, прочих контролирующих организаций, с периодичностью, необходимой для нормального функционирования объекта, согласно ПУЭ.
  • Профилактические испытания.

Измерения электрики осуществляются для предотвращения возгорания или поражения человека электрическим током. Периодичность проведения определяется ответственным за электрохозяйство. Профессионально замерить сопротивление изоляции могут только опытные инженеры лаборатории по электрике, имеющие необходимый допуск, к производству электроизмерительных работ.

Также, организация оказывающая услуги электроизмерения обязана иметь действующее Свидетельство о регистрации электролаборатории выданное Ростехнадзором. Свидетельство выдается сроком на 3 года и должно быть актуально на момент исследования.

Индукторный мегаомметр типа М1101

Индукторный мегаомметр типа М1101 изображен на рис. 6.7

Рис. 6.7. Индукторный мегаомметр М1101:

а — принципиальная схема; б, в — схемы замещения при измерении сопротивления изоляции в поло­жениях соответственно «.МОм» и «кОм»; г — шкала

Индукторный мегаомметр типа М1101 (рис. 6.7, а) снабжен встроенным генерато-

ром (индуктором) переменного тока G с ручным приводом.

Напряжение генератора, выпрямляемое несимметричной мостовой схемой на дио-

дах VD1, VD2, конденсаторах С1, С2, подается на измерительное устройство ИУ логомет-

рического типа с рабочей 1-1 и противодействующей 2-2 рамками.

Обе рамки и укрепленная с ними на одной оси стрелка образуют подвижную систе

му, поворачивающую­ся внутри поля постоянного магнита N – S.

Вращающиеся моменты обоих рамок направлены противоположно, причем по часо

вой стрелке у противодействующей рамки.

На лицевой части прибора имеются зажимы 3 (земля), Л (линия), Э (экран) и пере

ключатель S1 с двумя положениями: «МОм» и «кОм». Провод, идущий изнутри прибора к зажиму Л, экранирован, причем экранирующая оболочка соединена с за­жимом Э.

На схеме переключатель S1 находится в положении «МОм». При вращении рукоят

ки генератора G образуются 2 параллельные ветви (рис. 6.7, б) с токами

I = U / ( R + R + R ) и I = U / ( R + R + R + R ) ( 6.19 ),

где R и R — сопротивления соответственно измерительной и противодейству

ющей рамок.

В ветви с током I сопротивления R и R соединены последовательно.

Из соотношений, приведенных для токов I и I , следует, что с уменьшением R ток I не изменяется, а ток I увеличивается.

Поэтому угол поворота подвижной части прибора α = k I / I увеличивается и при R = 0 становится наибольшим, а стрелка прибора устанавливается в крайнее правое по

ложение напротив отметки «0» верхней шкалы (рис. 6.7, г).

Если переключатель S1 перевести в положение «кОм», измеряемое сопротивление R относительно участка цепи с измерительной рамкой 2-2 подключается параллельно (рис. 6.7, в) и при R = 0 замыкает рамку накоротко. Вращающий момент измерительной рамки уменьша­ется до нуля, стрелка прибора под действием вращающего момента рабо-

чей рамки поворачивается против часовой стрелки и устанавли­вается напротив отметки «0» нижней шкалы.

Дата добавления: 2015-07-16; просмотров: 250 | Нарушение авторских прав

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Мегаомметры

Важное значение имеет величина сопротивления изоляции токоведущих частей, поскольку она обеспечивает безопасную эксплуатацию электроустановки и предотвращает короткое замыкание. Изоляцию изготавливают из диэлектриков — материалов с высоким электрическим сопротивлением, измеряемым мегаомами

Потому для создания тока в цепи напряжения источника, тока имеющегося в обычном омметре недостаточно. Мегаомметр оснащен генератором постоянного тока, приводимым в действие вращением рукоятки. Он способен развивать напряжение до 2,5 кВ.

Вместо двух разъемов для подключения щупов, как у омметра, в мегаомметре имеется три с такой маркировкой:

  1. «З» (в некоторых моделях «Rx»): земля;
  2. «Л» («-»): линия;
  3. «Э»: экран.

Первые два разъема используют при измерении сопротивления изоляции между токоведущими частями и землей либо между разными фазами. При помощи разъема «Э» нейтрализуют помехи, влияющие на точность показаний.

Мегаомметры также делятся на аналоговые и цифровые. В первых применяется тот же измерительный механизм, что и в обычных омметрах.

При работе с мегаомметром из-за высокого напряжения требуется осторожность; после измерений необходимо по особой методике разрядить наведенную прибором высоковольтную разность потенциалов (заряд накапливается протяженными участками кабелей).

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ I

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.

Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети

Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих  вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.

Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).

Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления

Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.

Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.

Как измеряется сопротивление

Порядок проверки состояния изоляционного слоя зависит от типа проверяемого электрического проводника. На начальной стадии выполняются идентичные действия:

  1. Проверяется работоспособность мегаомметра. Понадобится соединить два зажима устройства, и сделать замер. Прибор должен показать ноль. Затем концы проводов измерительного устройства разводятся в сторону, и выполняется замер. Если в результате получится бесконечность, то прибор исправен.
  2. Измерения ведутся со стороны кабельной линии, где установлено переносное заземление. В процессе работы необходимо использовать диэлектрические перчатки.
  3. На другом конце кабельной линии следует развести жилы проводника в стороны. Для обеспечения безопасности людей от поражения электрическим током во время проведения испытания, следует поставить человека для предупреждения об опасности.

На завершающем этапе необходимо сравнить полученные результаты с допустимыми значениями, и составить протокол. В нем отражается последовательность выполненных действий, используемые измерительные средства, температурный режим и заключение о состоянии электрического проводника.

Методика измерения сопротивления изоляции высоковольтных силовых кабелей

Прозвонить высоковольтные проводники необходимо с использованием мегаомметра на 2500 В. Последовательность действий следующая:

  1. Один конец измерительного устройства цепляется к контуру заземления, а второй к фазе «А» кабеля.
  2. Снимается заземляющий проводник с фазы «А», и делается замер на протяжении 60 секунд.
  3. Далее понадобится установить заземление на фазу «А», и снять зажим мегаомметра.
  4. В дальнейшем аналогичные операции проводятся для фаз «В» и «С».

Схема измерения изоляции высоковольтного кабеля

При значительной длине кабельной линии испытания производятся с учетом коэффициента абсорбции. Потребуется зафиксировать показания прибора после 15 и 60 секунд измерений. Отношение значения сопротивления после 60 секунд к показанию после 15 секунд должно быть не менее 1.3. При меньшем значении делается вывод об увлажнении изоляционного слоя. Для устранения неисправности потребуется выполнить сушку проводника.

Методика измерения сопротивления изоляции низковольтных силовых кабелей

Для проведения работ потребуется использовать мегаомметр на 1000 В. После выполнения первоначальных пунктов, необходимо приступить к выполнению следующих мероприятий:

  1. Делается измерение сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
  2. Поочередно проверяется изоляция фаз кабеля относительно нулевого провода (N).
  3. Далее выполняется поочередные измерения между каждой фазой и заземляющим контуром (PE) при проверке пятижильного проводника.
  4. Отсоединяется нулевой провод от нулевой шинки и осуществляется измерение между N и PE.

Измерение сопротивления изоляции между жилами кабеля

После каждого испытания следует снимать потенциал посредством установки заземления.

Методика измерения сопротивления изоляции контрольных кабелей

Процесс проверки состояния изоляционного слоя указанной категории токопроводящих жил идентичен предыдущему пункту, за одним исключением. Жилы кабеля, которые не участвуют в проверке, необходимо закоротить и подсоединить к заземляющему контуру.

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Нарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Остаточное явление в действии

Когда генератор описываемого устройства вырабатывает напряжение, поступающее впоследствии в измеряемую сеть, образуется разность потенциалов между контуром заземления и проводом. Впоследствии создается емкость, в которой присутствует определенный заряд.

При отключении измеряющего провода имеющаяся в мегаомметре цепь разрывается. Но частичному сохранению подлежит потенциал из-за появления емкостного заряда в шине, проводе. Контакт человека с подобным участком приведет к электротравме токовым зарядом, который пройдет через тело. Избежать такой опасности поможет переносное заземление с обязательной изоляцией его рукоятки для безопасного устранения емкостного напряжения.

Прежде чем включать мегаомметр для работы, следует убедиться в отсутствии в проверяемой схеме напряжения остаточного заряда. В этом случае рекомендуется воспользоваться вольтметром, специальными индикаторами, подающими необходимый сигнал. Описываемый прибор дает возможность выполнять ряд процедур, в частности это:

  • проверка изоляции десятижильного кабеля по отношению к земле;
  • проведение необходимых замеров в каждой жиле относительно друг друга;
  • определение качества изоляции между жильными проходами.

В любом случае обязательно должно использоваться переносное заземление. Для обеспечения правильной и безопасной работы предварительно заземляющий проводник замыкается с контуром на грунте. В таком состоянии он находится до завершения всех мероприятий. Другим концом проводник соединяется с изоляционной штангой, с помощью которой и обеспечивается заземление для последующего устранения остаточного заряда.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Измерение сопротивления изоляции мегаомметром

Электрическая энергия передается по проводам, жилам кабелей, шинам. Электрический ток преобразуется в тепло в нагревательных элементах, создает вращающее магнитное поле в обмотках электродвигателей. Материалы, по которым он проходит, объединяет общее свойство: они проводят электрический ток. А свойство, характеризующее способность проводить ток лучше или хуже, называется электрическим сопротивлением.

Сопротивление материалов, называемых проводниками, относительно мало. Разница только в том, что у металлов и сплавов, использующихся для изготовления нагревательных элементов, оно повыше. За счет этого ток, проходя через них, вызывает их нагрев.

Но передача электроэнергии и функционирование всех электроприборов невозможна без материалов, имеющих противоположное свойство – не проводить ток. Такие материалы называют изоляторами .

Для проводов и кабелей изоляторами являются материалы, которыми покрыты токопроводящие жилы. Для нагревателей – термостойкое покрытие нагревательных элементов. Обмоточные провода электродвигателей покрыты тонким слоем лака. Все они выполняют функцию, сходную с водопроводной трубой: направляют ток в нужное русло, не позволяя ему попадать туда, куда не надо.

Состав изоляции кабеля

Но идеальный изолятор в обычных условиях получить невозможно. Любой материал, не проводящий ток, обладает хоть и малым, но сопротивлением. Оно настолько незначительно, что им можно пренебречь, работоспособность электрооборудования от этого не ухудшается. Но состояние изоляторов может со временем измениться. В электрооборудование попадает вода. В чистом виде она является изолятором (дистиллированная вода), но в том, в котором она существует в быту, она – проводник. Попадая на изоляционные поверхности, она ухудшает их свойства и приводит к коротким замыканиям.

Фарфоровая изоляция нагревательного элемента в утюге

Оболочки и изоляция жил кабелей и проводов со временем стареют или повреждаются. Процесс старения длится много лет, а повреждения возникают внезапно. Это можно не заметить, но начавшийся процесс ухудшения изоляции со временем развивается все быстрее, приводя к выходу оборудования из строя.

И если бы только оборудования. Короткие замыкания в кабелях или электроприборах приводят к пожарам. Ухудшение фазной изоляции приводит к появлению на корпусах электрооборудования опасных для жизни напряжений. А это уже угрожает жизни людей .

Как оценить состояние изоляции? Ведь ее повреждение происходит в местах, недоступных для осмотра. Для этой цели служат измерительные приборы, называемые мегаомметрами .

Описание процесса

Перед началом измерений следует убедиться в отсутствии напряжения на проверяемой аппаратуре. Для этого каждый из проверяемых проводников на несколько секунд заземляется с помощью переносного заземления на штанге.

Дальнейшая схема действий зависит от того, проверяется ли единственный проводник или многожильный кабель. В первом случае измеряют сопротивление изоляции относительно земли.

Если испытанию подлежит кабель, сначала проверяют поочерёдно качество изоляции каждого отдельного провода относительно остальных проводов, соединённых вместе. После этого поочерёдно измеряют сопротивление изоляции каждого отдельного изделия относительно земли. Если требуется проверка силового трансформатора, вначале будет проверяться качество изоляции его выводов относительно корпуса. После этого проверяется сопротивление изоляции между отдельными обмотками трансформатора.

Каждое измерение сопротивления изоляции мегаомметром следует производить в следующем порядке:

  • убедиться, что напряжение на проверяемом проводе отсутствует;
  • подключить мегаомметр к исследуемой цепи;
  • проверить правильность соединений;
  • снять с проводов заземление;
  • провести необходимые измерения;
  • заземлить провода, которые только что проверяли;
  • только после этого отключаем мегаомметр.

Методика измерения этого параметра такова:

  • собирается измерительная цепь;
  • на линию подаётся испытательное напряжение;
  • через 15 секунд после подачи напряжения записываются показания (назовём их R15) — но испытание продолжается;
  • записываются показания через 60 сек. после подачи напряжения (R60).

Отношение значения R60 к R15 и есть «коэффициент адсорбции». Кабель считается хорошим, если этот параметр превышает 1,5.

Кроме коэффициента адсорбции, есть другой важный параметр, который говорит о качестве изоляции и может быть измерен с помощью мегаомметра. Испытание проводят так же, как при измерении коэффициента адсорбции, но показания мегаомметра записывают через 1 минуту и через 10 мин. Отношение R600 к R60 называется индекс поляризации. Он говорит о степени деградации изолирующих материалов.

Современные микропроцессорные мегаомметры умеют самостоятельно отмерять требуемые временные интервалы и вычислять коэффициент адсорбции и индекс поляризации. По окончании испытания такие приборы сразу выводят готовые показания на экран.

Как правильно использовать приборы для измерения сопротивления

Относительно технологии замеров, применять приборы требуется по указанной методике:

  1. Выводят людей из проверяемого места электрической установки. Говорится об опасности, вывешиваются спецплакаты.
  2. Снимается напряжение, обесточивается в полной мере щит, кабель, принимаются меры от случайной подачи напряжения.
  3. Проверяется отсутствие напряжения. Заранее заземляются выводы испытываемого объекта, устанавливаются щупы для измерений, снимается заземление. Такую процедуру проводят во время каждого нового замера, так как смежные элементы накапливают заряд, вносят отклонения в показания и несут риск для жизни.
  4. Монтаж и снятие щупов производят за изолированные ручки в перчатках. Делается акцент на том, что изоляция провода до проверки сопротивления очищается от загрязнения.
  5. Проверяется изоляция провода между фазами. Данные заносят в протокол измерений.
  6. Отключаются автоматы, УЗО, лампы и светильники, отсоединяются нулевые кабели от клеммы.
  7. Производится замер всех линий по отдельности между фазами. Данные также вносятся в протокол.
  8. При выявлении изъянов разбирается измеряемая часть на элементы, находится дефект и устраняется.

По завершении испытания с помощью переносного заземления снимается остаточный заряд с помощью короткого замыкания, разряжаются щупы.

Использование приборов

Принцип работы электромеханического мегаомметра

Задача любого мегаомметра – создать на измерительных выводах напряжение выбранной для измерений величины и измерить ток, проходящий по измеряемой цепи.

Сначала для генерации напряжения использовались электромеханические машины постоянного тока. Их роторы вращались при помощи рукоятки мегаомметра. Для того, чтобы генератор при измерениях выдавал номинальное напряжение, частоту вращений выдерживали в пределах 2 оборота в секунду .

Такие конструкции применялись в мегаомметрах М4100. но применяется и сейчас – в ЭСО 202. Достоинство этих приборов одно: им не требуется ни подключение к сети, ни батарейки или аккумуляторы. Но недостатков намного больше:

  • Во время измерений корпус прибора сложно удержать в неподвижном состоянии. Вместе с корпусом дергается и стрелка, что снижает точность измерений.
  • Показания прибора зависят от скорости вращения .
  • В местах, где провода прибора при измерениях приходится держать руками (с применением диэлектрических перчаток, конечно), в измерениях участвуют два человека. Один обеспечивает контакт проводов с объектом измерений, другой – крутит ручку мегаомметра.
  • При большом количестве требуемых измерений процесс происходит медленнее, чем при использовании электронных приборов.

Измерительная система электромеханических приборов – аналоговая, результаты считываются по шкале со стрелочным указателем. Дополнительный недостаток измерительной системы – шкала нелинейная, класс точности – небольшой .

Мегаомметр ЭСО 202

Отличие современного прибора ЭСО 202 от М4100 – наличие переключателя напряжений, выдаваемых мегаомметром. Это удобно при измерениях на объектах, имеющих в составе электрооборудование, сопротивление изоляции которого измеряют при разных напряжениях. Например, кабели с напряжением 380 В (изоляция измеряется при 1000 В) и электродвигатели (500 В). В остальном приборы схожи, только переключение диапазонов измерений у М4100 производится на клеммах прибора, а у ЭСО 202 – переключателем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector