Расчет снеговой нагрузки на кровлю и ее особенности
Содержание:
- Применение данных о снеговой нагрузке при создании проекта кровли
- Воздействие силы ветра
- Определение снеговой нагрузки по формуле
- Ветровая нагрузка
- Монтаж снегозадержателей на скатную кровлю
- Географический фактор
- Снеговая нагрузка: СНиП для точных расчетов
- Ветровая нагрузка на кровлю
- Расчетная снеговая нагрузка
- Расчет деревянных элементов покрытия: обрешетки и стропильной ноги
- Расчет стропил
Применение данных о снеговой нагрузке при создании проекта кровли
Мы выяснили, как рассчитать вес снега на крышу. Теперь гораздо важнее правильно применить рассчитанный коэффициент при проектировании всей кровли и особенно ее стропильной части.
Такая важная и основополагающая часть кровли, как мауэрлат, в принципе, не зависит от снеговой нагрузки, так как ложится на стены и служит для распределения давления стропил на стены дома
Но для качественной и прочной крыши важно учесть некоторые моменты
- Предпочтительнее применять для мауэрлата брус с квадратным сечением.
- Установка производится с условием, что до угла несущей стены должно остаться 3-5 см. То есть мауэрлат примерно на 10 см короче стены, на которую он укладывается.
- При тонких стенах мауэрлат должен быть уложен с перекрытием стены на 4-5 см, то есть быть толще ее на 10 см. В этом случае брус хорошо распределяет нагрузку от стропильной системы и не допускается разрушение краев стены.
Важным моментом в проектировке крыши является расчет стропил. При выборе их сечения и шага учитываются следующие показатели:
длина стропил;
вес планируемого кровельного материала;
снеговая нагрузка;
при планировании стропильной системы кроме веса снега важно произвести расчет ветровой нагрузки на кровлю. Особенно важен этот момент в ветреных регионах или при отдельно стоящем от остальных зданий доме.
Сечение и шаг стропил должны быть рассчитаны таким образом, чтобы не только выдерживать названную выше нагрузку, но и обладать запасом большей прочности
Особенно важно здесь обратить внимание на длину стропильных ног. От этого параметра зависит такой момент, как прогиб бруса
Чем длиннее стропильная нога, тем больше будет ее прогиб. Узнать эту величину необходимо заранее в специализированном справочнике строительных материалов, где собраны значения прогибов разных сечений бруса на погонный метр. Допустимым является прогиб не более 10-15 мм. При большем значении сечении балки увеличивается на 20%.
Не менее важно учесть вес такого кровельного элемента, как обрешетка. Если планируется использование мягкой кровли и создание под нее сплошной обрешеточной системы, то подобная конструкция будет также иметь значительный вес, который в обязательном порядке должен быть учтен при проектировании кровли.
Воздействие силы ветра
Снеговая нагрузка может разрушить крышу, ну а ветровая кроме этого может сорвать покрытие. Чем большим является угол скатов кровли, тем больше будет нагрузка ветра на конструкцию. Чем меньшим будет угол, тем сильнее будет подъемная сила, стремящаяся сорвать крышу. Именно поэтому так важен расчет площади двухскатной крыши. Для начала определяют длину стропильной ноги. Здесь пригодится знания школьного курса геометрии, так как стропило составляет с прилегающими стенами прямоугольный треугольник, поэтому рассчитав длину гипотенузы можно определить необходимый показатель.
Немного сложнее посчитать сечение стропила и расстояние между ними. Для этого проведем расчет ветровой нагрузки на кровлю по формуле: Wр= W*k*C. W — ветровое давление, которое берется из таблиц СНиП. k — коэффициент, зависящий от высоты здания, он также указывается в упомянутом выше нормативном документе. С — аэродинамический коэффициент, используемый для расчета подъемной силы с подветренной и наветренной стороны.
Коэффициент С может иметь как положительное, так и отрицательное значение. Первый случай возникает, если ветер давит на поверхность скатов, это справедливо для больших углов. Второй случай возникает на пологих крышах, когда ветер «стекает» по скатам. Для противодействия этим силам, в зависимости от шага стропил, в стены дома устанавливают так называемые «ерши». Это металлические штыри, к которым проволокой привязываются стропильные ноги. В ветреных регионах привязывается каждое стропило, при нормальных условиях это делают через одну балку, предварительно выполнив расчет балок перекрытия по имеющимся данным.
Определение снеговой нагрузки по формуле
В рабочем проекте поиск снеговой нагрузки выполняется с учетом срока эксплуатации здания, формы и параметров кровли. Для определения снеговой нагрузки используется формула, которая приведена в пункте 8.2 ДБН В.1.2-2:2006:
γfm – коэффициент надежности по предельному значению снеговой нагрузки, который определяется в зависимости от заданного среднего периода повторения зимы. Приведенная таблица, в зависимости от прогнозируемого срока эксплуатации (а соответственно и повторения периодов зимы) определяет необходимый нам коэффициент.
Т, лет | 1 | 5 | 10 | 20 | 40 | 50 | 60 | 80 | 100 | 150 | 200 | 300 | 500 |
γfm | 0,24 | 0,55 | 0,69 | 0,83 | 0,96 | 1,00 | 1,04 | 1,10 | 1,14 | 1,22 | 1,26 | 1,34 | 1,44 |
В этом же нормативе ДБН В.1.2-2:2006 есть приложение «В», в котором указаны примерные сроки эксплуатации зданий и сооружений. Для отдельностоящих фундаментов, например, под лебедку возле железнодорожного полотна можно принять срок повторения – 50 лет и соответственно коэффициент γfm равным единице (табл. 8.1, п. 8.11 ДБН В.1.2-2:2006).
S – характеристическое значение снеговой нагрузки (в Па), которое определяется либо по приложению «Е», либо с помощью карты районирования территории Украины за характеристическим значением веса снегового покрова (Рис. 8.1 ДБН В.1.2-2:2006).
Что интересно, в таблице приложения «Е» данные приведены по наиболее большим городам Украины. Однако если взять некоторые из этих городов и определить значение S по карте, данные будут немного отличаться. Не стоит этого бояться. В карте наведены обобщенные линии районирования с укрупненными показателями, которые в Вашем расчете дадут небольшой запас.
Вообще в любом расчете не стоит «вылизывать» данные до идеальной точности. Старайтесь укрупнять и проводить проверку в чуть более худших условиях, чем того требует проект.
С – коэффициент, который определяется по формуле:
μ – коэффициент перехода от веса снегового покрова на поверхность грунта до снеговой нагрузки на кровлю. Здесь Вам понадобиться приложение «Ж», в котором в зависимости от типа кровли выбирается разный коэффициент μ.
Для строительства дачных домов нужно запомнить самое важное. Для односкатной крыши коэффициент μ, при любом угле наклона равен 1.0
А вот для двухскатной крыши есть три варианта:
- если угол наклона меньше 25° коэффициент μ=1.0;
- если угол наклона от 25° до 60° коэффициент μ=0.7;
- если угол наклона больше 60° коэффициент μ=0.0 (то есть снеговая нагрузка не учитывается).
Сe – коэффициент, который учитывает режим эксплуатации кровли. Этот коэффициент учитывает влияние особенностей режима эксплуатации и нагромождения снега на кровле, учитывая его принудительное очищение. Данные должны быть установлены в задании на проектировании. Если в задании этих данных нет, коэффициент принимается равным 1.0.
Calt – коэффициент географической высоты, который используется только для строений, находящихся в горной местности. Большого влияния этот коэффициент не имеет, поэтому его также принято принимать 1.0. Хотя в горной местности могут быть варианты, тогда его необходимо считать по формуле 8.5 в п. 8.10 ДБН В.1.2-2:2006
Ветровая нагрузка
Ветровая нагрузка на крышу при боковом давлении воздушного потока несет столкновение с крышей и со стеной здания. Завихрение потока, происходящее у стены, частично уходит к фундаменту, другая часть потока по касательной стены производит удар о свес крыши. Атака ветрового потока огибает касательно конек крыши с захватом спокойных молекул воздуха со стороны подветренной и уходит прочь. Исходя из этого, сил способных сорвать кровлю или опрокинуть ее, возникает сразу три. Одна – сила подъема, которая образуется при разности давления воздуха со стороны подветренной, и две другие силы – касательные со стороны наветренной.
Возникает еще одна сила, способная вдавить склон крыши, действующая перпендикулярно скату. Касательные и нормальные силы могут изменять свое значение в зависимости от угла наклона ската. Понятно, что чем больше величина угла наклона кровли, тем большее влияние принимают силы нормальные и меньше касательные. На крышах пологих принимают большое значение касательные силы, увеличиваясь в своей подъемной силе со стороны подветренной, таким образом, уменьшается нормальная сила со стороны наветренной.
А теперь давайте посмотрим, как происходит расчет нагрузки. Кстати, на карте Украины вам вновь придется переводит Паскали в килограммы, как мы это делали при расчете снеговой нагрузки.
Расчет ветровой нагрузки w, зависящей от высоты z над землей, определяется по такой формуле: Wр = W?k(z)?c, в которой W – расчетное значение давления ветра, определяемое по карте «Изменениях к СНиП 2.01.07-85»; а коэффициент k учитывает изменения ветрового давления для z, определим по таблице; коэффициент c – учитывает изменения всех направлений давления нормальных сил, в зависимости от расположения ската к наветренной или подветренной сторон.
Аэродинамические коэффициенты со знаком «плюс» определяют направление создаваемого давления ветра на поверхность (давление активное), «минус» — от соответствующей поверхности (отсос). Линейной интерполяцией находятся промежуточные значения нагрузок. При затрудненном использовании таблиц 3, 4 на рисунке про аэродинамические коэффициенты ветровой нагрузки, практикуют выбор наибольшего значения коэффициентов для определенных углов наклона крыш.
Крыши с крутым углом наклона, ветер разрушает опрокидыванием, пологие крыши – срываются. Для избегания разрушения, строители нижние концы стропильных ног прикрепляют скруткой из проволоки к ершу, который вбит в стену. Ерш представляет собой штырь из металла с насечками предотвращающие выдергивание, изготавливают способом ковки. Если неизвестен факт стороны, с которой ожидается сильный ветер, то лучше стропильные ноги прикрутить через одну по периметру всего здания – стороны с умеренным ветром, и каждую ногу – в районе с сильным воздушным давлением. Укрепление стропил можно произвести другим образом – концы проволоки заложить в укладку стен во время строительства. Чтобы не испортить внешний фасад, концы проволоки выпустить внутрь чердачного помещения. Удобна в таком использовании отожженная стальная проволока, с диаметрами начиная от 4 мм и до 8 мм.
Общую устойчивость каркаса крыши обеспечивают подкосами, раскосами и связками по диагонали. Способствует стропильной системе использование устройства обрешетки.
Вот таким образом и происходит расчет ветровой нагрузки на крышу.
Если вы внимательно читали, то должны были понять, что вообще их себя представляют ветровая и снеговая нагрузка для вашего будущего дома. Если отнесетесь не серьезно к этому делу, то может произойти беда. Это еще не все виды нагрузок. Оставшиеся виды описываются в другой статье.
Монтаж снегозадержателей на скатную кровлю
При условии корректного расчета нагрузки, необходимости в дополнительной очистке крыши от снега – нет. Предотвратить его сползание к козырьку помогут снегозадерживающие приспособления. Такие устройства позволяют избежать ручной очистки крыши, и достаточно просты в использовании.
Как правило, используются трубчатые конструкции. Они рассчитаны на показатели Снеговой нагрузки в пределах 180 кг/м2. Если снеговой мешок на кровле существенно больше этого показателя, снегозадержатели устанавливают в несколько рядов.
Согласно СНиП снегозадержатели монтируют таким образом:
- предполагается наличие внешнего водостока и уклон скатов от 5 %;
- расстояние от козырька крыши до снегозадержателя составляет 0,6-1 м;
- обязательным условием установки трубчатых снегозадержателей является наличие сплошной обрешетки кровли.
Размеры, тип конструкции снегозадерживающих приспособлений, размещение и принцип работы этих устройств, можно также найти в СНиП.
Географический фактор
Вес снега напрямую зависит от региона. Естественно, что этот показатель больше в северных областях и уменьшен в южных. Но существует особенное место – возле гор либо на высокой части холмов. Да иногда дома строятся и здесь, и владельцам постоянно приходится сталкиваться с проблемой сильного снежного и ветрового воздействия. Это происходит в любых географических точках, поскольку такова специфика высокогорных участков планеты.
На основе строительных норм и правил (СНиП) предлагаются подробные таблицы. Они объясняют допустимый уровень снега на территории различных регионов.
На основе предложенной информации можно с уверенностью рассчитывать необходимую прочность и наклон крыши. Но не стоит отбрасывать особенности материала, использованного для образования покрытия крыши. Дополнительные факторы, приводящие к увеличению скопления снежного покрова на крыше, не менее важны. В совокупности все это может значительно превысить нормативные показатели, предложенные в таблице.
Снеговая нагрузка: СНиП для точных расчетов
Определение показателя снеговой нагрузки на кровлю является обязательной стадией проектирования любой постройки, особенно, если речь идет о строительстве дома в районах с большим количеством снежных осадков. Игнорирование этого этапа может стать причиной выхода из строя всей кровли, соответственно, ухудшение жилищных условий и постепенного разрушения всего здания.
При проведении вычислений, необходимо учитывать такие факторы:
- Средний вес сухого снега равен 100 кг на м3 , куб мокрого снега, при этом, будет весить около 300 кг;
- Толщина покрова снега должна измеряться на открытом участке. Для упрощения расчетов можно воспользоваться таблицей снеговой нагрузки;
- Значение расчетной толщины покрова необходимо умножить на коэффициент запаса – 1,5. Окончательное значение можно использовать при вычислении полной снеговой нагрузки.
Чтобы вычислить полную снеговую нагрузку на крышу, необходимо умножить вес снега на 1м2 на расчетный коэффициент. Коэффициент определяется по углу уклона скатов. Так, если величина уклона превышает 60 градусов, снега на такой крыше быть не может – он не будет задерживать на кровле, а значит, коэффициент будет равен нулю. Градус уклона крыши меньший, чем 25 градусов предполагает использование коэффициента 1, при промежуточных значениях (250 – 600), следует применять коэффициент 0,7.
Вес снега определяется по специальной таблице, где указана снеговая нагрузка по областям Украины.
Область | Максимальная снеговая нагрузка, кг/м2 |
---|---|
АР Крым | 100 |
Винницкая | 139 |
Волынская | 124 |
Днепропетровская | 139 |
Донецкая | 150 |
Житомирская | 146 |
Закарпатская | 149 |
Запорожская | 111 |
Ивано-Франковская | 153 |
Киевская | 160 |
Кировоградская | 132 |
Луганская | 147 |
Львовская | 150 |
Николаевская | 120 |
Одесская | 117 |
Полтавская | 160 |
Ровенская | 132 |
Сумская | 179 |
Тернопольская | 139 |
Харьковская | 160 |
Херсонская | 84 |
Хмельницкая | 137 |
Черкасская | 156 |
Черновицкая | 132 |
Черниговская | 172 |
Имея все необходимые данные, мы без труда рассчитаем полную снеговую нагрузку по любому району. Так, например, рассчитаем этот показатель для кровли с углом уклона 40 градусов в городе Киев.
- A1 – интересующий нас показатель полной снеговой нагрузки на кровлю;
- Aрасч – расчетная снеговая нагрузка;
- k – коэффициент уклона крыши;
- A1= Aрасч*k
Например для скатной кровли в Киевской области, берем находим значение в табличке 160×0,7=122 гк/м2
Таким образом, вычислив снеговую нагрузку на кровлю, вы можете без труда определить необходимое сечение стропил и учесть все конструктивные особенности кровли для монтажа керамической черепицы Braas
Ветровая нагрузка на кровлю
Расчет ветровой нагрузки производится подобным образом. За основу берется нормативное значение ветровой нагрузки, действующее в данном регионе, которое умножается на поправочный коэффициент высоты здания:
W= Wo * k;
W — ветровая нагрузка на квадратный метр площади.
Wo — нормативная величина по региону.
k — поправочный коэффициент, учитывающий высоту над поверхностью земли.
Роза ветров
Имеются три группы значений :
- Для открытых участков земной поверхности.
- Для лесных массивов или городской застройки с высотой препятствий от 10 м.
- Для городских поселений или местностей со сложным рельефом с высотой препятствий от 25 м.
Все нормативные значения, как и поправочные коэффициенты содержатся в таблицах СНиП и должны учитываться при расчетах нагрузок.
ОСТОРОЖНО!
При проведении расчетов следует учитывать независимость снеговых и ветровых нагрузок друг от друга, а также — одновременность их воздействия. Общая нагрузка на кровлю — это сумма обоих значений.. В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами
Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона
В заключение необходимо подчеркнуть большую величину и неравномерность нагрузок, создаваемых снегом и ветрами. Значения, сопоставимые с собственным весом крыши, нельзя игнорировать, такие величины слишком серьезны. Невозможность регулировать или исключать их присутствие заставляет реагировать путем увеличения прочности и правильного выбора угла наклона.
Все расчеты должны опираться на СНиП, для уточнения или проверки результатов рекомендуется использовать онлайн-калькуляторы, которых много в сети. Лучшим способом станет применение нескольких калькуляторов с последующим сравнением полученных величин. Правильный расчет — основа долговременной и надежной службы кровли и всей постройки.
Расчетная снеговая нагрузка
Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:
- скаты крыши могут быть наклонными, снег будет разложен на большей площади;
- ветра, сдувающие снег с кровли, в каждой местности свои;
- окружающие строения изменяют влияние ветров;
- теплопроводность крыши может привести к ускоренному таянию и снижению веса.
Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.
Формула расчета
Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.
При расчете нормативная нагрузка S g умножается на три коэффициента:
- µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
- c t – термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
- c b – ветровой коэффициент, учитывающий снос снега ветром.
Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.
Определение коэффициентов
Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.
Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:
- На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
- Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
- На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).
Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.
Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:
- Есть постоянные ветра со скоростью от 4 м/с и выше.
- Средняя зимняя температура воздуха ниже 5С.
- Угол ската кровли от 12° до 20°.
Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.
Пример расчета нагрузки
Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.
Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.
Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.
Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м2
Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м2.
Расчет деревянных элементов покрытия: обрешетки и стропильной ноги
1. Расчет несущих элементов покрытия
Стропильные ноги рассчитывают как свободно лежащие балки на двух опорах с наклонной осью. Нагрузка на стропильную ногу собирается с грузовой площади, ширина которой равна расстоянию между стропильными ногами. Расчетная временная нагрузка q должна быть расположена на две составляющие: нормальную к оси стропильной ноги и параллельно к этой оси.
2.1.1. Расчет обрешетки
Принимаем обрешетку из досок сечением 50´50 мм (r = 5,0 кН/м), уложенных с шагом 250 мм. Древесина — сосна. Шаг стропил 0,9 м. Уклон кровли 35 0 .
Расчет обрешетки под кровлю ведется по двум вариантам загружения:
а) Собственный вес кровли и снег (расчет на прочность и прогиб).
б) Собственный вес кровли и сосредоточенный груз.
1.Принимаем бруски 2-го сорта с расчетным сопротивлением Ru=13 МПа и модулем упругости Е=1´10 4 МПа.
2.Условия эксплуатации Б2 (в нормальной зоне), mв=1; mн=1,2 для монтажной нагрузки при изгибе.
4.Плотность древесины r=500 кг/м 3 .
5.Коэффициент надежности по нагрузке от веса оцинкованной стали gf=1,05; от веса брусков gf=1,1.
6.Нормативный вес снегового покрова на 1м 2 горизонтальной проекции поверхности земли S=2400 Н/м 2 .
Расчетная схема обрешетки
Сбор нагрузки на 1м.п. обрешетки, кН/м
где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной
поверхности земли, принимаемое по табл. 4 , для IV снегового рай-
m — коэффициент перехода от веса снегового покрова земли к
снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .
При загружении балки равномерно распределенной нагрузкой от собственного веса и снега наибольший изгибающий момент равен:
При углах наклона кровли a³10° учитывают, что собственный вес кровли и обрешетки равномерно распределен по поверхности (скату) крыши, а снег — по ее горизонтальной проекции :
Mx = M cos a = 0.076 cos 29 0 = 0.066 кН´м
My= M sin a = 0.076 sin 29 0 = 0.036 кН´м
Прочность брусков обрешетки проверяют с учетом косого изгиба по формуле:
где Mx и My — составляющие расчетного изгибающего момента относительно главных осей X и Y.
Ry=13 МПа — расчетное сопротивление древесины изгибу.
gn=0,95 — коэффициент надежности по назначению.
Момент инерции бруска определяем по формуле:
Прогиб в плоскости, перпендикулярной скату:
Прогиб в плоскости, параллельной скату:
где Е=10 10 Па — модуль упругости древесины вдоль волокон.
Проверка прогиба:
где
При загружении балки собственным весом и сосредоточенным грузом наибольший момент в пролете равен:
Проверка прочности нормальных сечений:
где Ry=13 МПа — расчетное сопротивление древесины изгибу.
gn=0,95 — коэффициент надежности по назначению.
Условия по первому и второму сочетаниям выполняются, следовательно принимаем обрешетку сечением b´h=0,05´0,05 с шагом 250 мм.
2.1.2. Расчет стропильных ног
Рассчитаем наслонные стропила из брусьев с однорядным расположением промежуточных опор под кровлю из оцинк. кр. железо. Основанием кровли служит обрешетка из брусков сечением 50
=0,25 м
=1,0 м
Район строительства – г. Вологда.
Расчетная схема стропильной ноги
Бруски обрешетки размещены по стропильным ногам, которые нижними
концами опираются на мауэрлаты (100
Производим сбор нагрузок на 1 м 2 наклонной поверхности покрытия, данные заносим в таблицу 2.2.
Таблица 2.2Сбор нагрузки на 1м.п. стропильной ноги, кН/м
где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое по табл. СНиП 4 , для IV снегового района S = 2,4 кПа;
m — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .
Производим статический расчет стропильной ноги как двухпролетной балки, нагруженной равномерно распределенной нагрузкой. Опасным сечением стропильной ноги является сечение на средней опоре.
Изгибающий момент в этом сечении:
Вертикальное давление в точке С, равное правой опорной реакции двухпролетной балки составляет:
При симметричной нагрузке обоих скатов вертикальное давление в точке С удваивается:
Раскладывая это давление по направлению стропильных ног, находим сжимающее усилие в верхней части стропильной ноги:
Растягивающее усилие в ригеле равно горизонтальной проекции усилия N.
Проверяем сечение стропильной ноги.
Из условия прочности при изгибе определяем требуемый момент инерции, вводя коэффициент 1,3 для возможности восприятия сечением продольной силы и момента.
Сечение Æ16см удовлетворяет требованиям. Wx=409,6 см 3 , Jx=3276,8 см 4 . Производим проверку сечения на сжатие с изгибом:
Расчет стропил
Если вы строите дом самостоятельно, и у вас нет достаточных знаний в области инженерии и архитектуры, то расчет нагрузки на крышу можно заказать в специализированной организации или у частного проектировщика. Если же постройка не столь требовательна к техническим расчетам, то все можно сделать своими собственными силами.
Как правильно рассчитать длину стропил? Она зависит от углов скатов крыши и от ее формы. Сперва следует ознакомиться с нормативной документацией. Для этого потребуется СНиП 2.01.07-85 и приложенные карты к изменениям в этом документе (они были обновлены в 2008 году). Оптимальный шаг между стропилами рассчитывают исходя из возможного предела расстояния, после которого конструкции разрушится полностью или частично.
При частичном разрушении выходят из строя различные элементы и узлы системы. Так, допустимый прогиб элементов конструкции стропил, ног, прогонов или раскосов не должен быть более 0,5% длины прогона или пролета
Полное разрушение наступает при превышении максимально допустимых нагрузок, поэтому крайне важно сделать правильный расчет стропил изначально. Рассчитывать необходимо оба варианта, так как важно знать пределы стойкости стропильной системы.