Схемы подключения однофазных электродвигателей через конденсатор

Содержание:

Схемы подключения

Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

https://youtube.com/watch?v=tqwz6Uv7mlE

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Подключаем трехфазный двигатель к 220В

Данный способ подразумевает подключение трехфазного асинхронного двигателя к электросети 220В посредством конденсатора. Чтобы подключение было правильным, необходимо соблюсти несколько условий:

  1. Схема подключения для двигателя – треугольник. Если на двигателе выводы соединены по методу звезды, необходимо их перекоммутировать.
  2. Конденсатор подбирают по принципу: на каждые 100Вт – 10 мкФ.
  3. Способ подходит для простых двигателей, без внутренних блоков управления и предустановленных конденсаторов.

Для наглядности объяснения обозначим выводы от 1 до 6. Алгоритм подключения:

  1. Работаем только с группой выводов, располагающейся с одной стороны (например, с 1-го по 3-ий).
  2. Берем выводы 1 и 2 и подсоединяем на них провода конденсатора.
  3. Берем провод питания, который будет подключаться к сети 220В. Подключаем один конец провода питания к 1-му выводу, второй на 3-ий вывод. Второй вывод не трогаем, на нем запитан конденсатор и больше ничего!
  4. Запускаем двигатель.

Этот способ прост и безопасен. Также перед самим подключением рекомендуется прозвонить все обмотки на предмет «пробития» на корпус, а также целостности самих контуров.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли  бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий  в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления  СИФУ.
  • Регулятора
  • Защиты.

Трехфазные электродвигатели

В трехфазных электрических двигателях существенно большая мощность, а также крутящий момент во время запуска. Подключение трехфазного электродвигателя простое только в том случае, если имеется розетка с тремя фазами 380 В. Но использовать в бытовых условиях такие моторы оказывается проблематично, так как трехфазная сеть есть далеко не у всех дома. Обмотки соединяются по схеме «звезда» или «треугольник», это зависит от того, какое межфазное напряжение в сети.

Но вот в том случае, если вам потребуется подключить такой электрический двигатель в бытовую сеть, придётся использовать маленькую хитрость. По сути, у вас имеется в розетке ноль и фаза. При этом «0» можно считать как один из выводов источника питания, то есть фазу, у которой сдвиг равен нулю.

Чтобы сделать еще одну фазу, необходимо при помощи дополнительного конденсатора осуществить сдвиг фазы питания. Всего должно быть три фазы, каждая имеет сдвиг относительно соседних на 120 градусов. Но чтобы сделать сдвиг правильно, необходимо рассчитать емкость конденсаторов. Так, на каждый киловатт мощности электродвигателя потребуется рабочая емкость около 70 мкФ, а также пусковая около 25 мкФ. При этом они должны быть рассчитаны на напряжение от 600 В и выше.

Но лучше всего производить подключение электродвигателей 380 В трехфазного типа с помощью частотных преобразователей. Существуют модели, которые подключаются к однофазной сети, а при помощи специальных инверторных схем они преобразуют напряжение, в результате чего на выходе оказывается три фазы, которые необходимы для питания асинхронного мотора.

{SOURCE}

Классические варианты подключения

Большинство эл. моторов для современных электроприводах работают от переменной трехфазной линии (каждая из трех фаз подается отдельным проводником). Соответственно, клеммная коробка содержит выводы (входной и выходной) трех обмоток. Между собой и с сетью они могут соединяться по двух классическим схемам: «звезда» и «треугольник».

Схема подключения Звездой и Треугольником

Для первой характерной особенностью является замыкание концевых выводов каждой катушки в одну точку (на практике это одну нейтраль). На входные вывода между тем подается напряжение сети. Подобная схема характеризуется более мягким ходом, но к сожалению, не позволяет развить полную мощность.

https://youtube.com/watch?v=PjZextDphQU

Второй вариант с треугольником характеризуется последовательным соединением выводов обмоток: конец первой соединяется с началом второй и т. д. Такой вариант пуска гарантирует достижение паспортной мощности, но во время включения возможно возникновение больших по значению токов, которые могут термически повредить обмоточные выводы.

Если снять крышку клеммной коробки, то оба варианта подключения будут выглядеть следующим образом:

Какие запчасти машинки можно приспособить?

  • Эл. двигатель. Если у старой машины работает эл. двигатель, то это уже само по себе клад. Аккуратно извлеките его из корпуса, отсоединив все провода, протрите, заверните в тряпочку и уберите в надежное место.
  • Барабан. Барабан стиральной машины автомат сделан из качественной нержавеющей стали, применений у него масса, поэтому его нужно также вытащить из корпуса и сохранить.
  • Крышка люка. Тоже довольно полезная вещь, причем пригодится не только сама крышка, но и ее детали.
  • Ножки, хомуты, шланги, эл. проводка. Все это может пригодиться куда угодно.
  • Пружины и противовесы. Пружины на машинках играют роль амортизаторов, они очень мощные, а противовесы хороши тем, что они тяжелые, но компактные – оставляем и то и другое.
  • Корпус стиральной машины. После извлечения всего полезного, верните на место стенки машинки, сам корпус также может быть полезен.

Для чего применить двигатель машинки и как его подключить?

Рабочий эл. двигатель от стиральной машины автомат или полуавтомат может стать основой для очень нужных в домашнем хозяйстве приборов. Наиболее распространенное применение – эл. наждак для заточки ножей, инструментов, сверл и прочего. Сделать такой наждак не очень просто, но все-таки возможно. Первая и основная проблема заключается в том, как закрепить точильный камень на валу двигателя.

Диаметр отверстия точильного камня, как правило, не соответствует диаметру вала эл. двигателя от стиральной машины. Значит необходимо изготовить фланец, который бы с одной стороны запрессовывался на вал, а с другой имел резьбу для того чтобы можно было одеть и закрепить точильный круг. Профессиональные мастера рекомендуют приспособить в качестве фланца обрезок стальной трубы на 32 мм. Что делаем?

  1. Берем обрезок стальной трубы на 32 мм. Длинна обрезка должна быть см 15-20, сильно длинный не подойдет.
  2. На одном конце обрезка трубы нужно нарезать резьбу, длина резьбы должна минимум в 2 раза превышать толщину точильного круга.
  1. Нагреваем паяльной лампой другой конец обрезка трубы и запрессовываем его на вал, после того как труба остынет она прочно соединится с валом. Для упрочения соединения, можно дрелью просверлить место стыка трубы с валом двигателя поперек и вкрутить в отверстие болт, затянуть гайкой. Если есть сварка, то можно ею фланец к валу прихватить – будет идеально.
  2. Теперь берем три подходящие по размерам гайки и две соответствующие шайбы. Накручиваем первую гайку на фланец до упора, пока не кончится резьба. Далее одеваем шайбу, затем точильный круг, затем снова шайбу и гайку. Все хорошо затягиваем и в конце прикручиваем контргайку.

Главное сделали, теперь наша задача закрепить двигатель так надежно как это возможно. Посмотрите, какие отверстия для крепежных элементов есть на эл. двигателе, здесь все индивидуально, исходя из этого, делайте подставку. Самое простое – скрутить подставку из небольших уголков, а уж затем закрепить наждак на верстаке.

Еще один ответственный этап работ по изготовлению наждака — подключение эл. двигателя к электросети. Рассмотрим простейший вариант.

  • Берем мультиметр и проверяем проводки-выводы мотора.
  • Нам необходим вывод рабочей обмотки. Чтобы его обнаружить, нужно произвести замеры сопротивления, если прибор на одном из выводов покажет значение близкое к 12 Ом, значит это и есть рабочий вывод.
  • Подключаем рабочий вывод к электросети (220В).
  • Без пускового устройства наш наждак не запустится даже после того, как мы подключили его к сети, поэтому, чтобы наждак начал вращаться его нужно с силой крутануть рукой. Действуйте аккуратно, и ваша рука заменит пусковое устройство.

Существует еще варианты применения электродвигателя от стиральной машины, но принцип применения точно такой же. Его ставят на небольшие самодельные зернодробилки и измельчители травы, бытовые бетономешалки и даже на маленькие пилорамы. Описывать нюансы изготовления каждого электроприбора мы не будем, проведите аналогии самостоятельно.

Типовые схемы управления ад с короткозамкнутым ротором

Это поможет вовремя выявить и устранить ошибку до выхода из строя самого прибора.
Интенсивность динамического торможения регулируется резистором Rт, с помощью которого устанавливается необходимый постоянный ток в статоре двигателя.
На всех бытовых приборах, от соковыжималки до шлифовальной машины, установлены механизмы этого типа.
Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.
Подключение электромотора с пусковым сопротивлением: Вспомогательная обмотка таких устройств имеет повышенное активное сопротивление. Положительные черты: отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени; высокий момент силы на низкой частоте вращения; простое и динамичное управление. Для питания бытовых приборов и электродвигателей применяется подключение к однофазной сети с напряжением в В.

Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели. Чтобы проверить работоспособность двигателя, следует включить его сначала на 1 минуту, а затем дать поработать около 15 минут. Схема управления асинхронным двигателем с использованием магнитного пускателя рис. После нажатия кнопки SB1 пускатель КМ1 приходит в действие, подавая электроток в цепь статора с включенным сопротивлением. В данной схеме нажатием кнопки реверса меняется чередование фаз питающего напряжения на статоре двигателя, что будет вызывать смену направленности его вращения реверсом.

Это приводит к включению контактора торможения КМ1, подаче в обмотки статора постоянного тока от выпрямителя V через резистор Rт и переводу двигателя в режим динамического торможения. Они удовлетворяют большинству требований к электроприводу станков. Схема обеспечивает прямой без ограничения тока и момента пуск двигателя, отключение его от сети, а также защиту от коротких замыканий предохранители FА и перегрузки тепловые реле КК. Ниже перечислены дефекты, которые сигнализируют о возможных проблемах с двигателем, их причиной могла стать неправильная эксплуатация или перегрузка: Сломанная опора или монтажные щели.

Схема управления АД с использованием реверсивного магнитного пускателя В схеме предусмотрена защита от перегрузок двигателя реле КК и коротких замыканий в цепи статора автоматический выключатель QF и управления предохранители FА. Однофазные варианты электродвигателей намного проще и не столь критичны, если допущены ошибки в определении полярности или емкости конденсатора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Модели различаются между собой по мощности, частоте вращения, высоте оси вращения, КПД.
Тепловая защита электродвигателя. Электротепловое реле

Как подключить через конденсаторы

Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).

Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».

Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).

Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.

Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.

Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.

Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:

  • Рабочие конденсаторы подключаются параллельно;
  • Номинальное напряжение должно быть не меньше 300 Вольт;
  • Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
  • Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.

Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.

Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.

Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.

Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.

Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.

Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:

  • Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
  • Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
  • Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.

ПОПУЛЯРНОЕ У ЧИТАТЕЛЕЙ: Выбивает автомат, ищем причины

С конденсатором дополнительная упрощенная — для схемы звезда.

С конденсатором дополнительная упрощенная — для схемы треугольник.

Нужные ненужные вещи

Многие просто вывезут машину на свалку и забудут о ней. Но это не решение вопроса для рачительного и умелого хозяина. Вы были бы удивлены, узнав, куда и какие детали стиральной машины можно было бы приспособить в домашнем хозяйстве. И в нашей статье мы расскажем о наиболее ценной детали данного агрегата – об исправном двигателе стиральной машинки-автомат.

Наиболее подходящий вариант использования электродвигателя – это его подключение к другому устройству. Например, электроточильному станку (или любому другому). Но для этого, прежде всего, нужно подключить мотор к бытовой сети 220 В и отрегулировать количество его оборотов.

Схема подключения электродвигателя. Подключение однофазного электродвигателя

Существует несколько схем подключения электродвигателей. Всё зависит от того, какой тип машины используется. В быту каждый человек использует множество электрических приборов, около 2/3 из общего числа имеют в своей конструкции электрические двигатели различной мощности с разными характеристиками.

Обычно, когда приборы выходят из строя, двигатели могут продолжать работать. Их можно использовать в других конструкциях: изготовить самодельные станки, электронасосы, газонокосилки, вентиляторы. Но вот нужно определиться с тем, какую схему использовать для подключения к бытовой сети.

Описание разных типов электродвигателей

Современная стиральная машина-автомат, как правило, имеет трехфазный электродвигатель, но старые советские аналоги могли иметь и двухскоростной режим работы, хотя встречаются теперь они очень редко. Любой электрический двигатель – это аппарат, работающий с помощью электроэнергии, и предназначается он для приведения в движение различных конструкционных элементов.

Разбирая стиральную машину, вы можете увидеть в ней электродвигатель с тахогенератором, который регулирует число оборотов, совершаемых вращающимся валом, а в зависимости от типа, электромотор может быть щеточный или сконструирован без применения щеток. Разные производители автоматических стиральных машин используют для различных моделей определенные типы электродвигателей, которые подразделяются на 3 варианта.

Асинхронный

Чаще всего асинхронные электромоторы бывают трехфазными, но среди них у старых моделей стиральных машин иногда попадаются и двухфазные варианты. Асинхронные электродвигатели применяются в 90% бытовой техники, так как их конструкция надежная и недорогая по себестоимости. Основной принцип действия такого электрического двигателя состоит в совместном действии магнитного поля статора и потоков, которые генерируются этим полем в роторе. Вращение электродвигателя возникает при разности частот, возникающих в процессе вращения магнитных полей.

Асинхронные электродвигатели надежны и долговечны, их обслуживание заключается в регулярной смазке внутреннего подшипникового механизма. Однако такой электромотор имеет большой вес и громоздкие габариты, что не всегда является удобным во время его применения.

Коллекторный

Этот тип электродвигателей стал современной модификацией, которая пришла на замену большим асинхронным моделям с невысоким КПД. В отличие от них, коллекторный электромотор имеет возможность работать как от постоянного, так и от переменного напряжения электротока. Электрический двигатель состоит из неподвижного статора и подвижного ротора. Статор генерирует энергию, а ротор передает ее на вращаемый вал, который является его составной частью. У вала имеется коллектор, благодаря которому на обмотку ротора поступает электроэнергия.

Такой электрический двигатель способен выполнять вращение в любую нужную сторону, то есть вправо или влево, стоит лишь изменить у него полярность при подключении щеток на обмотке статора. Для коллекторного типа электромотора характерна не только высокая скорость его вращений, но и возможность плавного изменения скоростного режима, что регулируется путем изменения напряжения. Коллекторный электромотор имеет компактные габариты, кроме того, для него характерен большой пусковой момент.

Этому электродвигателю требуется частая замена щеток и чистка коллектора, что производится в результате регулярных профилактических осмотров агрегата подобного типа. Щеточный узел считается самым слабым местом у таких электродвигателей. И хотя период работоспособности щеток составляет от 8 до 10 лет, все это время в процессе работы щетки стачиваются, из-за чего на всех остальных деталях электрического двигателя оседает мелкодисперсная угольная пыль.

Инверторный

На сегодняшний день самым современным типом электродвигателя, с компактными размерами и высоким уровнем коэффициента полезного действия при высокой мощности, является инверторный тип. В его составе, как и у других электромоторов, есть статор и ротор, но число соединений между ними минимально. Так как внутри электродвигателя нет элементов, которые быстро изнашиваются в процессе работы, это позволяет агрегату работать без перебоев довольно длительное время, не создавая при этом шума и вибраций. Инверторные электродвигатели стоят в стиральных машинах дорогостоящих моделей, так как себестоимость такого электрического мотора значительно выше его аналогов.

Анализируя свойства всех 3-х типов электродвигателей, можно сделать выводы, что асинхронный вариант – наиболее прост по своей конструкции, но у него невысокий уровень КПД. Коллекторный тип электромотора хорош тем, что дает возможность регулировки оборотов вращения.

Как подключить однофазный асинхронный мотор

В любом асинхронном электродвигателе, рассчитанном на питание от однофазной сети 220 В, имеется две обмотки — пусковая и рабочая. В качестве «коллектора» используется цилиндрическая болванка из алюминия, которая насажена на валу. Можно даже отметить, что цилиндр на роторе является, по сути, короткозамкнутой обмоткой. Существует множество схем для включения асинхронного мотора, но применяется на практике немного:

  1. С использованием балластного сопротивления, подключенного к обмотке пуска.
  2. С включенным конденсатором на обмотке запуска.
  3. При помощи кнопочного или релейного пускателя, стартового конденсатора, включенного в цепь обмотки пуска.

Очень часто применяется комбинация кнопочного или релейного пускателя, а также постоянно включенного рабочего конденсатора. Вместо реле очень часто используется электронный ключ на тиристоре. При помощи этого переключателя производится подключение однофазного электродвигателя с дополнительной группой конденсаторов.

Тяжелые условия эксплуатации электродвигателей с перемоткой «Славянка»

Своевременный ремонт электродвигателей и их последующая перемотка на «Славянку», позволяют использовать агрегаты в следующих условиях:

  • частый пуск;
  • затяжной пуск;
  • тяжелый пуск;
  • большие перепады напряжения.

Как правило, асинхронные трехфазные двигатели с совмещенной обмоткой помогают решить проблему запуска при отсутствии частотных регуляторов, а при наличии таковых их рабочие характеристики превосходят аналогичные показатели других двигателей. При этом количество потребляемой электроэнергии снижается до 50%, не только в условиях перепадов напряжения, но и при меняющейся или неноминальной нагрузке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector