Удельные потери давления трубопровода калькулятор

Содержание:

Последовательность выполнения гидравлического расчета

1.
Выбирается главное циркуляционное
кольцо системы отопления (наиболее
невыгодно расположенное в гидравлическом
отношении). В тупиковых двухтрубных
системах это кольцо, проходящее через
нижний прибор самого удаленного и
нагруженного стояка, в однотрубных –
через наиболее удаленный и нагруженный
стояк.

Например,
в двухтрубной системе отопления с
верхней разводкой главное циркуляционное
кольцо пройдет от теплового пункта
через главный стояк, подающую магистраль,
через самый удаленный стояк, отопительный
прибор нижнего этажа, обратную магистраль
до теплового пункта.

В
системах с попутным движением воды в
качестве главного принимается кольцо,
проходящее через средний наиболее
нагруженный стояк.

2.
Главное циркуляционное кольцо разбивается
на участки (участок характеризуется
постоянным расходом воды и одинаковым
диаметром). На схеме проставляются
номера участков, их длины и тепловые
нагрузки. Тепловая нагрузка магистральных
участков определяется суммированием
тепловых нагрузок, обслуживаемых этими
участками. Для выбора диаметра труб
используются две величины:

а)
заданный расход воды;

б)
ориентировочные удельные потери давления
на трение в расчетном циркуляционном
кольце Rср.

Для
расчета Rcp
необходимо знать длину главного
циркуляционного кольца и расчетное
циркуляционное давление.

3.
Определяется расчетное циркуляционное
давление по формуле

,
(5.1)

где

,
(5.2)

где

,
(5.3)

где

Значение
коэффициента можно
определить из табл.5.1.

Таблица
5.1 — Значение в
зависимости от расчетной температуры
воды в системе отопления

(),C

,
кг/(м3К)

85-65

0,6

95-70

0,64

105-70

0,66

115-70

0,68

В
насосных системах с нижней разводкой
величиной

  1. Определяются
    удельные потери давления на трение

где
к=0,65 определяет долю потерь давления
на трение.

5.
Расход воды на участке определяется по
формуле

(5.5)

гдеQ
– тепловая нагрузка на участке, Вт:

(tг
— tо)
– разность температур теплоносителя.

6.
По величинам

6.
Для выбранных диаметров трубопроводов
и расчетных расходов воды определяется
скорость движения теплоносителя v
и устанавливаются фактические удельные
потери давления на трение Rф.

При
подборе диаметров на участках с малыми
расходами теплоносителя могут быть
большие расхождения между

7.
Определяются потери давления на трение
на расчетном участке, Па:

.
(5.6)

Результаты
расчета заносят в табл.5.2.

8.
Определяются потери давления в местных
сопротивлениях, используя или формулу:

,
(5.7)

где

Значение ξ
на каждом участке сводят в табл. 5.3.

Таблица 5.3 —
Коэффициенты местных сопротивлений

№ п/п

Наименования
участков и местных сопротивлений

Значения
коэффициентов местных сопротивлений

Примечания

9.
Определяют суммарные потери давления
на каждом участке

.
(5.8)

10. Определяют
суммарные потери давления на трение и
в местных сопротивлениях в главном
циркуляционном кольце

.
(5.9)

11. Сравнивают Δр
с Δрр.
Суммарные потери давления по кольцу
должны быть меньше величины Δрр
на

.
(5.10)

Запас располагаемого
давления необходим на неучтенные в
расчете гидравлические сопротивления.

Если условия не
выполняются, то необходимо на некоторых
участках кольца изменить диаметры труб.

12. После расчета
главного циркуляционного кольца
производят увязку остальных колец. В
каждом новом кольце рассчитывают только
дополнительные не общие участки,
параллельно соединенные с участками
основного кольца.

Невязка потерь
давлений на параллельно соединенных
участках допускается до 15% при тупиковом
движении воды и до 5% – при попутном.

Таблица
5.2 — Результаты гидравлического расчета
для системы отопления

На
схеме трубопровода

По
предварительному расчету

По
окончательному расчету

Номер
участка

Тепловая
нагрузка Q,
Вт

Расход
теплоносителя G,
кг/ч

Длина
участка l,м

Диаметрd,
мм

Скоростьv,
м/с

Удельные
потери давления на трение R,
Па/м

Потери
давления на трение Δртр,
Па

Сумма
коэффициентов местных сопротивлений∑ξ

Потери
давления в местных сопротивлениях Z

d,
мм

v,
м/с

R,
Па/м

Δртр,
Па

ξ

Z,
Па

Rl+Z,
Па

Занятие 6

Расчет потерь напора воды в трубопроводе

Чтобы выбрать насос для скважины, необходимо сделать расчёт потребного напора, а одна из частей определения потребного напора – это расчёт потерь напора в трубопроводе. Именно этой части вопроса посвящена данная статья.

Потеря напора в трубопроводе связана с тем, что поток воды, протекающий внутри трубы, испытывает сопротивление. Его величина зависит от:

  1. диаметра трубы – чем меньше диаметр, тем больше сопротивление
  2. скорости потока – чем больше скорость потока, тем больше сопротивление
  3. гладкости внутренней поверхности трубы.

Даже двигаясь по прямой, горизонтальной трубе, поток воды испытывает сопротивление, пусть и небольшое. При большой протяженности трубопровода суммарное сопротивление может оказаться значительным.

Расчёт потерь напора на прямых участках трубопровода

Чтобы не вдаваться в глубокие теоретические расчеты, можно воспользоваться уже готовыми таблицами с вычисленными данными для всех основных диаметров труб и расходов воды. Сейчас повсеместно используются полимерные трубопроводы – из полипропилена, полиэтилена низкого или высокого давления и других полимеров. Такие трубы имеют массу преимуществ перед стальными трубами: они легче, проще в монтаже, не подвержены коррозии, дешевле, более гладкие, и как следствие в них меньше потери напора.

В этой таблице приведены значения потери напора на 100 м трубопровода. Потеря напора указана в метрах водного столба.

Для стальных труб можно использовать эти же значения, умножив их на коэффициент 1,5.

Например, при расходе воды 0,5 м 3 /ч в трубопроводе с внутренним диаметром 19 мм и длиной 100 м потеря напора составляет 2,1 м.

Расчёт потери напора на местных сопротивлениях

Кроме того, потеря напора происходит в местных сопротивлениях: поворотах, изгибах, вентилях, заслонках, в разветвлениях трубопровода и в местах его сужения или расширения. Потери напора воды в них зависят от скорости потока и формы местного сопротивления.

Ниже в таблице приведены потери напора в основных местных сопротивлениях:

Потеря местного сопротивления указана в сантиметрах водного столба.

Расход воды соотносится со скоростью потока так:

где Q – это расход воды (в м 3 /с), S – площадь поперечного сечения (в м 2 ), v – скорость потока (в м/с). Площадь поперечного сечения для трубы S = π*D2/4, где D – внутренний диаметр трубы.

Например, при расходе воды 0,5 м 3 /ч (0,000138889 м 3 /с) в трубопроводе с внутренним диаметром 19 мм (S = 0,000283385 м 2 ), скорость потока составит

v = Q / S = 0,000138889 / 0,000283385 = 0,49 м/с

Местное сопротивление колена при этом будет 1,9 см, а клапана 32 см.

Как видно, потери напора на местных сопротивлениях – это самая малая часть потерь во всём трубопроводе. Они могут быть значительными только при больших скоростях потока, т.е. когда через тонкую трубу проходит большой объем воды. Использования более толстых труб, диаметр, которых, соответствует расходу воды, практически снимает проблему местных сопротивлений. При расчете потерь напора воды (и дальнейшем выборе насоса для скважины) достаточно заложить на местные сопротивления несколько метров напора, с небольшим запасом для верности – от 2 до 4 м.

Вместе с потерями напора воды в прямых участках трубопровода, эта цифра для небольшого загородного дома может уложиться в 5 м.

Для того, чтобы правильно выбрать насос для своей скважины, необходимо знать, потребный напор – т.е. напор, который необходим для водопроводной системы дома. В этой статье речь пойдёт о расчете потребного напора и расчете потерь напора в трубах водопровода на примере небольшого загородного дома.

В этой статье речь пойдет о характеристиках насосов и скважин, и о том, как правильно выбрать для своей скважины насос, исходя из имеющихся нужд.

Расходная характеристика трубопровода модуль расхода

Вспомним
формулу линейных потерь – формулу Дарси
– Вейсбаха:.

Выразим
в этой формуле скорость V
через расход Q
из соотношения

Для
трубопровода определенного диаметра
комплекс величин

с.э

Обоснуем
правомерность введения понятия
среднеэкономической скорости следующими
рассуждениями.

Гидравлическую
систему, например водопроводную, для
пропуска определенного расхода можно
выполнить из труб разного диаметра. При
этом с увеличением диаметра d,
следовательно, уменьшением скорости V
капитальные затраты будут расти, а
эксплуатационные затраты будут
уменьшаться из-за снижения гидравлических
потерь. Скорость, при которой суммарные
затраты будут иметь минимальное значение,
будем называть среднеэкономической
скоростью Vс.э
= 0,8…1,3 м/с (рис.6.1).

рис.6.1

Тогда
формула линейных потерь (6.1) примет вид

,

где
К – расходная характеристика трубопровода
(модуль расхода), зависит от материала
трубопровода, диаметра и расхода. берется
из таблиц.

Какая мощность в системе ГВС и ХВС?

Давление воды в многоэтажных домах, подключенных к центральной водопроводной сети, не постоянно.

Оно зависит от таких факторов, как этажность дома или время года, — так в летний сезон, особенно в многоэтажных домах становиться особо ощутима нехватка холодной воды, которая в это время идет на полив придомовых или приусадебных участков.

Муниципальные службы на практике стараются держать уровень на средних показателях в 3-4 атмосферы, правда, не всегда успешно. Минимальные показатели, при котором трубопровод дома может функционировать (и для ХВС, и для ГВС), составляют 0.3 бара на один этаж.

Величина напора горячего и холодного водоснабжения несколько отличается в пользу последнего (допускается разница до 25 %).

Объясняется это просто – холодная вода используется активней, поскольку нужна для функционирования канализации. Поэтому максимальные показатели для ХВС будут 6 атмосфер, а для ГВС – 4.5 атмосферы.

Местные гидравлические сопротивления: свойства и характеристики

Как мы уже упоминали, потери напора жидкости в случае с местными сопротивлениями определяются в большинстве случаев только опытным путем. Но и в теоретическом обосновании есть некоторые прорывы — так, местное сопротивление по своим свойствам и характеристикам аналогично сопротивлению, которое наблюдается при внезапном расширении струи. И это логично, если учитывать, что поведение потока жидкости при преодолении любого локального сопротивления сопровождается сужением или расширением сечения.

1. При внезапном сужении трубы сопротивление сопровождается появлением водоворотной области в месте сужения, при этом струя уменьшается до размеров меньших, чем сечение наименьшей трубы. После того как поток проходит участок сужения, струя максимально расширяется, ограничиваясь внутренним сечением трубы. Коэффициент местного сопротивления при резком сужении трубы рассчитывается по формуле: ξвн.суж. = 0,5(1 — (F2/F1)). Значение коэффициента от отношения F2/F1 несложно найти в соответствующих пособиях по гидравлике.

2. При изменении направления трубы под углом гидравлические потери рассчитываются по формуле: ξ поворот = 0,946sin(α/2) + 2,047sin(α/2)², где α — это угол поворота трубы. Поток ведет себя следующим образом: сначала струя сжимается, после чего расширяется, так как при повороте по инерции поток отжимается от стенок трубы.

3. При входе в трубу цилиндрической формы с острой кромкой, которая наклонена к горизонту под углом α, коэффициент местного сопротивления высчитывается по формуле Вейсбаха: ξвх = 0,505 + 0,303sin α + 0,223sin α². Иногда труба имеет закругленную форму или в сечении входа стоит диафрагма, которая сужает сечение, — в любом случае сначала струя потока будет сжиматься, потом расширяться, то есть местное сопротивление при входе в водопровод можно свести к внезапному расширению струи потока.

4. В промышленности, в частности при работе с насосным оборудованием, часто приходится рассчитывать местные сопротивления, которые создаются запорной арматурой — вентилями и клапанами, кранами и задвижками и так далее. Вне зависимости от того, какую геометрическую форму имеет проточная часть, ограниченная запорной арматурой, гидравлический характер течения при преодолении сопротивлений не меняется. Если мы говорим о полностью открытой запорной арматуре, гидравлическое сопротивление будет колебаться в диапазоне от 2,9 до 4,5. Коэффициенты для определенного вида запорной арматуры можно найти в соответствующих справочниках.

5. Гидравлические потери диафрагмы определяются сужением струи потока и последующим ее расширением. Степень сужения потока и его последующего расширения определяется несколькими факторами — это особенности конструкции диафрагмы, отношение диаметров отверстия трубы и диафрагмы, режим движения жидкости и так далее.

6. Наконец, часто бывает необходимо рассчитать коэффициент местного сопротивления при входе струи потока под уровень жидкости. Впрочем, сложных расчетов проводить не потребуется, коэффициент сопротивления при входе струи в большой резервуар под уровень жидкости или в среду без жидкости связан с потерей кинетической энергии и равен 1.

Формула расчета гидравлических потерь давления

В этой статье мы решим задачку на потерю напора в трубопроводе. Данная статья поможет вам понять, как идет сопротивление движению потока. На реальных цифрах, опишу алгоритм как это делать. Используем основные формулы.

Разберем простой пример с трубой, как видно на изображении в начале трубы насос потом идет манометр, который позволяет измерить давление жидкости в начале трубы. Через определенную длину установлен второй манометр, который позволяет измерить давление в конце трубы. Ну и в самом конце стоит кран. Эта схема достаточно проста, и я попытаюсь привести примеры. И так начнем.

Вообще существует не один способ как узнать потерю напора: Способ, когда известно давление вначале и в конце трубы, можно вычислить потерю напора по формуле: М1-М2=Давление, то есть эта разница между двумя манометрами. Допустим у нас получилось, грубо говоря 0,1 МПа, что составляет одну атмосферу. Это значит у нас потеря напора по длине составляет 0,1 МПа

Обратите внимание, мы можем указывать потерю напора по двум величинам, это по гидростатическому давлению, что составляет 0,1 МПа и по высоте напора водного столба в метрах, что составляет 10 метров. Как я не однократно говорил каждые 10 метров это одна атмосфера давления

Существует ряд методов, как рассчитать потерю напора не имея манометров на трубах. Ученые исследователи приготовили для нашего пользования замечательные формулы и цифры, которые нам пригодятся.

Существует хорошая формула которая позволяет вычислить потерю напора по длине трубопровода.

h-потеря напора здесь она измеряется в метрах. λ-коеффициент гидравлического трения, находится дополнительными формулами о которых опишу ниже. L-длина трубопровода измеряется в метрах. D-внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. V-скорость потока жидкости. Измеряется [Метр/секунда]. g-ускорение свободного падения равен 9,81 м/с 2

А теперь поговорим о коэффициенте гидравлического трения.

Формулы нахождения этого коэффициента зависит от числа Рейнольдса и эквивалента шероховатости труб.

Напомню эту формулу (она применима только к круглым трубам):

V-Скорость потока жидкости. Измеряется [Метр/секунда]. D-Внутренний диаметр трубы, то есть диаметр потока жидкости. Должен быть вставлен в формулу в метрах. ν-Кинематическая вязкость. Это обычно для нас готовая цифра, находится в специальных таблицах.

Далее находим формулу для нахождения коэффициента гидравлического трения по таблице:

Здесь Δэ — Эквивалент шероховатости труб. Эта величина в таблицах указывается в милиметрах, но вы когда будете вставлять в формулу обязательно переводите в метры. Вообще не забывайте соблюдать пропорциональность единиц измерения и не смешивайте в формулах разных типа с .

d-внутренний диаметр трубы, то есть диаметр потока жидкости.

Также хочу подметить, что подобные величины по шероховатости бывают абсолютными и относительными или даже есть относительные коэффициенты. Поэтому когда если будете искать таблицы с величинами, то величина эта должа называться «эквивалентом шероховатости труб» и не как иначе, а то результат будет ошибочный. Эквивалент означает — средняя высота шероховатости.

В некоторых ячейках таблицы указаны две формулы, вы можете считать на любой выбранной, они почти дают одинаковый результат.

Таблица: (Эквивалент шероховатости)

Таблица: (Кинематическая вязкость воды)

А теперь давайте решим задачу:

Найти потерю напора по длине при движении воды по чугунной новой трубе D=500мм при расходе Q=2 м 3 /с, длина трубы L=900м, температура t=16°С.

Дано: D=500мм=0.5м Q=2 м 3 /с L=900м t=16°С Жидкость: H2O Найти: h-?

Решение: Для начала найдем скорость потока в трубе по формуле:

Сдесь ω — площадь сечения потока. Находится по формуле:

ω=πR 2 =π(D 2 /4)=3.14*(0,5 2 /4)=0,19625 м 2

Далее находим число Рейнольдса по формуле:

Re=(V*D)/ν=(10,19*0.5)/0,00000116=4 392 241

ν=1,16*10 -6 =0,00000116. Взято из таблицы. Для воды при температуре 16°С.

Δэ=0,25мм=0,00025м. Взято из таблицы, для новой чугунной трубы.

Далее сверяемся по таблице где находим формулу по нахождению коэффициента гидравлического трения.

Далее завершаем формулой:

h=λ*(L*V 2 )/(D*2*g)=0,01645*(900*10,19 2 )/(0,5*2*9,81)=156,7 м.

Ответ: 156,7 м. = 1,567 МПа.

Давайте рассмотрим пример, когда труба идет вверх под определенным углом.

В этом случае нам к обычной задаче нужно прибавить высоту(в метрах) к потери напора. Если труба будет идти на спуск в низ, то тут необходимо вичитать высоту.

Чтобы в ручную не считать всю математику я приготовил специальную программу:

Источник

Коэффициент гидравлического трения.

Для определения гидравлического сопротивления от трения о стенки трубы Sтр необходимо знать параметр Дарси λ – коэффициент гидравлического трения по длине.

В технической литературе приводится значительное количество формул разных авторов, по которым выполняется вычисление коэффициента гидравлического трения в различных диапазонах значений числа Рейнольдса.

Обозначения в таблице:

  • Re – число Рейнольдса;
  • k – эквивалентная шероховатость внутренней стенки трубы (средняя высота выступов), м.

В приведена еще одна интересная формула расчета коэффициента гидравлического трения:

λ=0,11·[(68/Re+kD+(1904/Re) 14 )/(115·(1904/Re) 10 +1)] 0,25

Вячеслав Леонидович выполнил проверочные расчеты и выявил, что вышеприведенная формула является наиболее универсальной в широком диапазоне чисел Рейнольдса!

Значения, полученные по этой формуле чрезвычайно близки значениям:

функции λ=64/Re для зоны ламинарного характера потока в диапазоне 10 0,25 для зоны турбулентного характера потока при Re>4500; в диапазоне 1500 Внимание!

В зоне переходного характера потока происходит смена знака наклона кривой λ, что может вызвать неработоспособность систем автоматического регулирования! ПФ КтрТрубаВода(Pвода,tвода,G,D,kэ) при турбулентном потоке существенно зависит от значения kэ – эквивалентной шероховатости внутренней поверхности трубы

В связи с этим следует обращать внимание на задание объективного значения kэ с учётом используемых при монтаже труб (см. стр.78÷83)

3 . Циркуляционные расходы в системе горячего водоснабжения

Для
поддержания минимально допустимой
температуры воды у самых дальних
водоразборных точек:

а)
для закрытой системы теплоснабжения
– +50 С;

б)
для открытой – +60 С

в системах
горячего водоснабжения предусматривают
циркуляцию.

Потери
теплоты подающими трубопроводами всего
дома определяем по формуле:

Qht=
Q
· ℓi ,
Вт, (3.1)

где
Qi– потери
теплоты 1м трубопровода данного диаметра
подающими трубопроводами всего дома,
Вт/м (табл.10.4) , см. приложение 4;

i
– длина участка данного диаметра, м.

Циркуляционный
расход для дома (п.8.2) :

,
л/c, (3.2)

где ∆t –
допустимое остывание воды на ее пути
от разводящего трубопровода до дальней
водоразборной точки стояка, которое
принимают равным:

∆t
= 5 оС
– для зданий высотой до четырех этажей;

∆t
= 8,5 оC
– для зданий свыше четырех этажей;

C
– теплоемкость воды С = 4,19 кДж/кг оС;

β –
коэффициент разрегулировки циркуляции.

Значения
Qht
и β в зависимости от схемы горячего
водоснабжения следует принимать:

– для
систем, в которых не предусматривается
циркуляция воды по водоразборным
стоякам, величину Qht
следует определять по подающим и
разводящим трубопроводам при ∆t=10 оС
и β=1;

– для
систем, в которых предусматривается
циркуляция воды по водоразборным стоякам
с переменным сопротивлением циркуляционных
стояков, величину Qht
следует определять по подающим разводящим
трубопроводам и водоразборным стоякам
при ∆t=10 о
С и β=1;

При
одинаковом сопротивлении секционных
узлов или стояков величину Qht
следует определять по водоразборным
стоякам при ∆t=8,5 оC
и β=1,3; для
водоразборного стояка или секционного
узла теплопотери Qht
следует
определять по подающим трубопроводам,
включая кольцующую перемычку, принимая
∆t=8,5 оC
и β=1.

Таблица
3

Гидравлический
расчёт подающих трубопроводов

при
циркуляционном расходе

№участка

Qcir,
л/с

d,

мм

,

м/с

i,

Па/м

ℓ ,

м

K

H,

Па

H,
Па

Как посчитать потерю?

Потеря давления в водопроводной сети происходит по следующим причинам (засоры и ржавчина труб не рассматриваются):

  1. Сопротивление трубы на прямых участках.
  2. Местное сопротивление (изгибы, клапана и т.п.).

Для удобства подсчетов существуют онлайн-калькуляторы, которые в считанные секунды позволяют выяснить уровень падения давления в трубопроводе. Также для решения этой задачи можно воспользоваться специальными табличными данными.

Расчет на прямых участках

Для расчета потерь нужно выяснить:

  • расход воды;
  • материал трубопровода, его диаметр и длину.

Выбрав нужное значение в таблице и выяснить величину снижения давления.

Табличные данные для полипропиленовых труб, — для металлических труб в вычисления нужно добавить поправочный коэффициент 1,5. Если длина трубы меньше 100 метров, то результат умножается на коэффициент длины. Так для металлической трубы с диаметром 50 мм, длиной 35 метров и расходом воды в 6.0 м³/ч получится следующий результат: 1,6*0,35*1,5=0,84 мвс.

На местах

Также потери происходят на поворотах и изгибах трубопровода, а также в местах нахождения запорной арматуры и фильтров.

Для расчетов существует специальная таблица, чтобы ей воспользоваться нужно узнать скорость потока воды в трубе, — вычисляется это следующим образом: расход нужно разделить на площадь сечения трубы.

Кондиционер с установкой за 19 990 руб.

Использование трубопроводов в системах кондиционирования и вентиляции

В системах кондиционирования теплоноситель перемещается по трубопроводам. Необходимый диаметр труб зависит от расхода теплоносителя.

При движении теплоносителя по трубопроводу происходят потери давления из-за гидравлических сопротивлений: трения и местных сопротивлений. Поэтому для расчета трубопровода используют формулы гидравлики. Принципы гидравлического расчета не зависят от вида теплоносителя, которым может быть вода, пар, хладагенты и т.д.

Наиболее распространенный метод расчета трубопроводов – метод удельных потерь давления. Этот метод состоит в раздельном подсчете потерь давления на трение и на местные сопротивления в каждом участке системы труб.

Потери давления в трубопроводе на трение

Потери давления на преодоление сил трения зависят от плотности и скорости течения теплоносителя, а также параметров трубопровода. Потери на трение Pтр измеряются в кг на кв.м. и рассчитываются по формуле:

Pтр = (x*l/d) * (v*v*y)/2g,

где x – безразмерный коэффициент трения, l – длина трубы в метрах, d – диаметр трубы в метрах, v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2).

Коэффициент трения x определяется материалом и шероховатостью стенок трубы, а также режимом движения жидкости. Различают два режима течения: ламинарное и турбулентное.

Чтобы не рассчитывать каждый раз потери на трение в трубе, составлены таблицы гидравлических потерь в зависимости от диаметра труб и расхода жидкости. Они содержатся в справочниках проектировщика систем кондиционирования. Ниже приведена таблица гидравлического расчета для обыкновенных стальных водогазопроводных труб (ГОСТ 3262-62), по которым движется вода.

Режимы течения жидкости

  1. Ламинарное течениеПотоки жидкости перемещаются в направлении течения, без образования вихрей. Гидравлическое сопротивление трубопровода зависит только от скорости движения теплоносителя. При скоростях теплоносителя, не превышающих 1-2 м/с, можно для расчетов считать течение ламинарным.
  2. Турбулентное течениеПри повышении скорости течения теплоносителя возникает турбулентность течения. Кроме перемещения в направлении потока, струи жидкости завихряются. При этом гидравлическая шероховатость труб повышается, то есть сильно увеличивается сопротивление трения. Поэтому при перемещении теплоносителя по трубопроводу нужно избегать турбулентностей.

Потери давления в трубопроводе на местные сопротивления

При изменении направления и скорости движения теплоносителя в трубопроводе системы кондиционирования возникают дополнительные сопротивления. Они называются местными и происходят в клапанах, отводах и т.п.

Потери давления на местные сопротивления на участке трубопровода рассчитываются по формуле:

Рмест = W* (v*v*y)/2g,

где v – скорость течения перемещаемой среды в м/с, y – плотность теплоносителя в кг/куб.м., g – ускорение свободного падения (9,8 м/с2), W – суммарный коэффициент местных сопротивлений на данном участке. Он определяется опытным путем либо содержится в справочниках.

Потери давления на местные сопротивления Z ищут отдельно для каждого участка сети трубопровода.

  1. Сначала определяют суммарный коэффициент W для участка.
  2. Затем умножают на динамический напор теплоносителя (v*v*y)/2g.

Замечание: при расчете водяных систем можно воспользоваться упрощенной формулой: Рмест = 50W*v*v.

Расчет общих потерь давления

Общие потери давления складываются из действия трения и местных сопротивлений: Р = Ртр + Рмест.

  1. Определяем потери давления на самом нагруженном участке. Обычно это самый удаленный от источника тепло-или холодоснабжения участок трубопровода.
  2. Затем приравниваем потери давления в последующих ответвлениях к потерям на самом нагруженном участке. Допустимо расхождение до 10-15%.
  3. Складывая потери давления частей трубопровода, получим общие потери давления в трубопроводе системы кондиционирования.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector