Модуль юнга е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности
Содержание:
- Модуль упругости бетона (Еб): способы определения значения
- Стандарт определения и таблица модулей упругости бетона
- Характеристики материала
- Общее понятие
- ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
- Расчётные сопротивления и модули упругости тяжёлого бетона, мПа
- 5. ОБРАБОТКА РЕЗУЛЬТАТОВ
- Два случая разрушения изгибаемых элементов и граничные условия.
- Какие факторы определяют модуль упругости бетона В25 и бетонов других классов
Модуль упругости бетона (Еб): способы определения значения
Порядок определения Еб может несколько отличаться. Каждый способ имеет свои отличительные особенности. Стоит ознакомиться с нюансами каждого метода, чтобы не допустить ошибок в момент определения значения.
Механическое испытание
При проведении механических испытаний образец подвергается разрушению. Исследование производится с учётом требований ГОСТ 24452, устанавливающих требования к используемым образцам и порядку проведения исследований.
ФОТО: nilstroi.ruДля проведения испытания требуется специальное оборудование
Материалы и инструменты
Для проведения исследований используются образцы, имеющие форму круга либо квадрата. Соотношение высоты и поперечного сечения принимают равным четырём. Образцы высверливаются, выбуриваются либо выпиливаются из готового изделия. До начала испытаний их держат под влажной тканью.
Для получения искомого значения образцы помещают на пресс, оснащённый специальными базами, позволяющими измерить деформацию. Приборы располагаются под разными углами к грани образца. Для фиксации индикаторов используются стальные рамки. В некоторых случаях индикаторы приклеиваются к опорным вставкам.
ФОТО: beton-house.comОбразец помещается под пресс
Схема испытания образцов
Испытания выполняются в следующей последовательности:
- Образцы подготавливаются и с индикаторами помещаются под пресс, добиваясь совмещения осей образца и центра плиты. Назначают разрушающую нагрузку в т/м2. Величина зависит от марочной прочности бетона.
- Производят ступенчатое увеличение нагрузки с шагом 10 % от разрушающей и интервалом 4-5 минут.
- Доводят значение до 40-45 % от максимального. При отсутствии дополнительных требований приборы снимают, а дальнейшее нагружение выполняют с постоянной скоростью.
- Результаты для каждого образца обрабатывают, когда нагрузка составляет 30 % от разрушающей. Данные отображаются в журнале испытаний.
По проведенным исследованиям определяют начальный модуль упругости Еб. Нормативные значения для каждого класса содержатся в таблицах со строительными нормами и маркировке изделия. Для В15, В20, В25, В30, полученного в условиях естественного твердения, коэффициент равен 23, 27, 30, 32,5 МПа×10-3 соответственно, в условиях термической обработки – 25, 24,5, 27, 29.
ФОТО: studfile.netНагрузка повышается ступенчато
Неразрушающий ультразвуковой способ
Механический способ предполагает выемку образца из уже готовой конструкции. Это не всегда удобно и сопряжено с рядом трудностей. Ультразвуковой способ позволяет обойтись без локального разрушения. В условиях повышенной влажности погрешность составляет 15 -75 % из-за более высокой скорости распространения ультразвуковых волн в водной среде. Существует метод, позволяющий найти значение при различной влажности материала. Испытания проводятся на образцах, имеющих различную водонасыщенность.
Для нахождения нормативных и расчётных значений используют корректирующие коэффициенты, учитывая соответствующие значения. Методика приведена в СП 63.13330.2012.
Watch this video on YouTube
Стандарт определения и таблица модулей упругости бетона
Выбор стройматериала является важнейшей задачей строителя перед началом выполнения работ. Модуль упругости бетона — один из главных критериев, влияющих на эксплуатационные характеристики
Параметр определяет возможность стеснения и расширения материала, зависит от многих факторов, которые важно учитывать
Что за величина?
Модуль упругости бетона — это возможность конструкции противостоять изменениям под воздействиями внешних факторов.
Это важный критерий выбора марки материала для определенной работы, так как затвердевший материал в процессе эксплуатации сжимается и растягивается.
Поэтому на этапе проектирования нужно правильно рассчитать допустимые значения для той или иной конструкции. Для расчетов пользуются таблицами определения модуля упругости, что представлены в нормативах для строительных работ.
Разновидности бетона и их показатель упругости
Бетонный камень в окончательном виде — твердый материал, что под влиянием внешней среды способен деформироваться. При постоянных механических нагрузках, даже модуль упругости железобетона может быть недостаточно высоким. Для определения вида прочности учитывается 2 критерия — растяжение и сжатие, что влияют на сопротивление нагрузкам.
Различают следующие виды материала:
Материал может производиться в нескольких разновидностях.
- тяжелые;
- легкие;
- мелкозернистые;
- поризованные;
- автоклавного твердения.
Таблица, содержащая классы и соответствующие модули упругости
Классификация в таблице производится согласно СП 52—101—2003:
Класс бетона | Модуль упругости |
19,0 | В10 |
24,0 | В15 |
27,5 | В20 |
30,0 | В25 |
32,5 | В30 |
34,5 | В35 |
36,0 | В40 |
37,0 | В45 |
38,0 | В50 |
39,0 | В55 |
39,5 | В60 |
От чего зависит величина?
На величину данного показателя значительно влияет наполнитель в материала.
Упругость раствора зависит от множества факторов
Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора
Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень
Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители
Учитывают не только интенсивность нагрузок, но и частоту.
Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C).
Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный).
Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.
Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.
Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций.
Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.
Посмотреть «ГОСТ 24452-80» или cкачать в PDF (350 KB)
Как определить?
СП 52 101 2003 — стандарт определения параметров применения бетона.
Здесь указаны значения всех необходимых коэффициентов для расчета параметров, а подтверждение проводится путем эксперимента на изготовленных образцах.
Суть испытания заключается в постепенной нагрузке на образцы (цилиндры или призмы из бетонной смеси) путем осевого сжимающего нагружения до разрушения. Параллельно измеряется степень деформации.
Посмотреть «СП 52-101-2003» или cкачать в PDF (1007.4 KB)
Результаты можно обозначить следующим образом:
- Показатель соответствует расчетам, образец поддался пластической деформации без растрескивания.
- Предварительные подсчеты неверные: при предполагаемом нагружении образец подвергается сильным разрушениям.
Расчетным способом определяют запас прочности не только обычных зданий, но и арочных сооружений, перекрытий, мостов и дорог. Модуль упругости асфальтобетона при использовании — проблемная задача проектирования, так как подход, разрешающий провести точные расчеты еще не выведен. Не удается определить взаимосвязь между статическим и динамическим модулями в процессе использования дорог.
Характеристики материала
Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.
Для разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.
Общее понятие
Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).
В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.
Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.
Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.
Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.
Дополнительные характеристики механических свойств
Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:
- Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
- Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
- Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
- Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
- Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
- Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.
Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.
У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.
ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
ВЫСОКОПРОЧНЫЙ БЕТОН
Бетон как материал, не подчиняющийся закону Гука, имеет диаграмму сжатия криволинейного очертания. Известны различные варианты математического описания кривой G = /(є), в основу которых положены экспериментальные закономерности . Исследования, значительная часть которых была проведена в ЦНИИС , позволили связать характерную форму этой кривой с физическими процессами деформирования и разрушения бетона (см. главу II).
При кратковременном возрастании статической нагрузки отклонение диаграммы сжатия от прямолинейной обусловлено преимущественно нарушением сплошности материала, вследствие перехода границы микроразрушения Rr по мере роста нагрузки и дальнейшим развитием микротрещин в бетоне . В более общем случае степень искривления диаграммы зависит также от скорости нагружения, поскольку наблюдаемые деформации включают определенную долю деформаций ползучести, проявляющихся частично на всех уровнях нагрузки. Поэтому даже при небольших нагрузках (в зоне так называемой линейной ползучести) обнаруживается некоторая криволинейность диаграммы . Вследствие этого модуль деформаций бетона, определяемый как тангенс угла наклона секущей к кривой о — є, не является постоянной величиной и уменьшается по мере роста напряжений.
Для практических оценок пределов изменения секущего модуля под кратковременной нагрузкой необходимо располагать данными, по крайней мере, о двух параметрах кривой а — є, начальном угле наклона этой кривой (начальный модуль деформаций) и величине деформаций, соответствующей максимуму кривой (предельная деформация под кратковременной нагрузкой). В указанном диапазоне модуль деформаций изменяется более или менее плавно . Значения обоих параметров, а также характер изменения модуля деформаций с ростом напряжений от нуля до максимальной величины существенно зависят от особенностей структуры бетона .
Рассмотрим характеристики деформативной способности бетона при кратковременном нагружении (начальный модуль деформаций и величину предельной деформативности), которые наиболее часто применяются для расчетов элементов конструкций.
Хотя наибольшее число экспериментальных данных в этой области получено при испытании бетонов в условиях одноосного сжатия, установленные закономерности можно с достаточным основанием использовать применительно к действию растягивающих напряжений в бетоне .
В лабораторных условиях начальный модуль деформаций бетона Е = ^ находят при определенной величине
Относительного уровня напряжений в бетоне, составляющей 20—30% предела прочности опытных образцов . В этой области напряжений (и вплоть до границы R?) кривая, характеризующаяся зависимостью а — є, имеет незначительную кривизну, поэтому начальный модуль деформаций практически не зависит от величины напряжений. Повторным нагружением бетона в зоне невысоких напряжений до некоторой степени можно исключить влияние остаточных деформаций бетона на величину модуля. Определенную таким путем характеристику деформативности бетона с ненарушенной структурой рассматривают условно как модуль упругости (начальный модуль упругости) этого материала.
Кольца колодцев
Кольца колодцев были и остаются очень востребованным строительным материалом. К слову, кольца колодцев приобретают не только те, чья деятельность связана с водоснабжением и канализацией, но и телефонисты, Интернет-провайдеры и, конечно …
ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ БЕТОНА
Полученное выражение (V.15) дает возможность сформулировать общее положение о характере зависимости меж — ду упругими и прочностными свойствами тяжелого бетона. Особенность этой связи заключается в том, что оца не является …
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА
Об усадке тяжелого бетона имеется не меньше экспериментальных данных, чем о его ползучести. Попытки- использовать эти данные для получения общих количественных закономерностей явления содержатся в ряде работ. При оценке возможной …
Расчётные сопротивления и модули упругости тяжёлого бетона, мПа
Таблица 2
Характеристики бетона |
КЛАСС БЕТОНА |
||||||||
В7,5 |
В10 |
В12,5 |
В15 |
В20 |
В25 |
В30 |
В35 |
В40 |
|
Для предельных состояний 1-й группы |
|||||||||
Сжатие осевое (призменная прочность) Rb |
4,5 |
6,0 |
7,5 |
8,5 |
11,5 |
14,5 |
17,0 |
19,5 |
22,0 |
Растяжение осевое Rbt |
0,48 |
0,57 |
0,66 |
0,75 |
0,90 |
1,05 |
1,20 |
1,30 |
1,40 |
Для предельных состояний 2-й группы |
|||||||||
Сжатие осевое Rb, ser |
5,5 |
7,5 |
9,5 |
11,0 |
15,0 |
18,5 |
22,0 |
25,5 |
29,0 |
Растяжение осевое Rbt, ser |
0,70 |
0,85 |
1,00 |
1,15 |
1,30 |
1,60 |
1,80 |
1,95 |
2,10 |
Начальный модуль упругости тяжёлого бетона обычного твердения Eb |
16000 |
18000 |
21000 |
23000 |
27000 |
30000 |
32500 |
34500 |
36000 |
Начальный модуль упругости тяжёлого бетона подвергнутого тепловой обработке при атмосферном давлении |
14500 |
16000 |
19000 |
20500 |
24000 |
27000 |
29000 |
31000 |
32500 |
Примечание. Расчётные сопротивления бетона для предельных состояний 2-й группы равны нормативным: Rb,ser =Rb,n; Rbt,ser =R bt, n.
Расчётные сопротивления и модули упругости некоторых арматурных сталей, мПа
Таблица 3
КЛАСС АРМАТУРЫ (обозначение по ДСТУ 3760-98) |
Расчётные сопротивления |
Модуль упругости Es |
|||
для расчёта по предельным состояниям 1-й группы |
для расчёта по предельным состояниям 2-й группы Rs,ser |
||||
растяжение |
сжатие Rsc |
||||
Rs |
Rsw |
||||
1 |
2 |
3 |
4 |
5 |
6 |
225 |
175 |
225 |
235 |
2,1·105 |
|
А300С |
280 |
225 |
280 |
295 |
2,1·105 |
А400С 6…8 мм |
355 |
285 |
355 |
390 |
2,0·105 |
А400С 10…40мм |
365 |
290 |
365 |
365 |
2,0·105 |
А600С |
510 |
405 |
450 |
590 |
1,9·105 |
BpI 3 мм |
375 |
270 |
375 |
410 |
1,7·105 |
BpI 4 мм |
365 |
265 |
365 |
405 |
1,7·105 |
BpI 5 мм |
360 |
260 |
360 |
395 |
1,7·105 |
Примечание. Расчётные сопротивления стали для предельных состояний 2-й группы равны нормативным: Rs,ser =Rs,n.
Соседние файлы в предмете
5. ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле
()
где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);
F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.
5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле
()
где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;
P1— соответствующее приращение внешней нагрузки;
ε1у — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
В пределах ступени нагружения деформации определяют по линейной интерполяции.
5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле
()
где ε2у — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
5.4 Значения ε1у и ε2у определяют по формулам:
ε1у = ε1 — ∑ε1п; ()
ε2у = ε2 — ∑ε2п, ()
где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;
∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.
Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.
5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:
ε1 = Dl1l1; ()
ε2 = Dl2l2, ()
где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;
l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.
При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.
5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.
Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле
()
где — среднее значение указанных величин в серии образцов данного размера;
yi — значение указанных величин по отдельным образцам;
п — число образцов в серии.
5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.
В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:
а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;
б) модуль упругости бетона отдельных образцов, МПа;
в) средний модуль упругости бетона в серии образцов, МПа;
г) значение коэффициента Пуассона отдельных образцов;
д) среднее значение коэффициента Пуассона в серии образцов;
е) база измерения деформаций, мм;
ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);
з) температура нагрева;
и) температура и относительная влажность воздуха помещения, в котором производились испытания.
В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.
5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .
Два случая разрушения изгибаемых элементов и граничные условия.
В зависимости от
количества арматуры, расположенной в
растянутой зоне элемента, его разрушение
может произойти по одному из двух
случаев:
Случай1- при
достижении в растянутой арматуре
предела текучести, а в сжатом бетоне
предела прочности на сжатии. (нехрупкое
разрушение элемента)
Случай 2- при
достижении предела прочности в сжатом
бетоне и напряжении в арматуре ниже
предела текучести. (хрупкое разрушение
элемента)
7.КлассификацияАрматуры,арматурные
изделия.(СНиП)Арматура
в ж/б конструкциях предназначена для
восприятия растягивающих усилий в
изгибаемых и растянутых элементах и
для усиления сечений сжатых элементов.
1.Рабочая —
воспринимает главным образом растягивающие
напряжения, её кол-во определяется
расчетом на восприятие проектных
нагрузок.
2.Монтажная — для
восприятия усилий от усадочных и
температурных деформаций бетона,
монтажных нагрузок, для обеспечения
проектного положения арматуры в
элементах конструкций.
А.Рабочую и монтажную
объединяют в изделия — сварные и вязанные
сетки и каркасы (плоские и пространственные)
Б.Стальная
подразделяется на горячекатаную
стержневую и холоднотянутую проволочную.
По условиям
применения: подвергаемая предварительному
натяжению, наз. напрягаемой арм.
В зависимости от
характера поверхности: гладкая и
периодического профиля, с выступами
на стержневой и вмятинами на проволочной
арматуре для лучшего сцепления с
бетоном.
Стержневая
подразделяется на 6 классов: А-I,
A-II…..,
в зависимости от основных её механических
характеристик.(таб СНиП).
Ат-т это термическое
упрочнение.
А-IV,
A-V
и Ат – для применения с предварительным
напряжением.
Арматурная
проволока: 1) обыкновенная арматурная
проволока В-I
(холоднотянутая, низкоуглеродистая) и
Вр-I
(периодического профиля), предназначенная
к применению без предварительного
напряжения. 2) высокопрочная арматурная
проволока В-II
(волоченная, холоднотянутая, углеродистая)
и Вр-II
(периодич. Профиля), предназначенная к
применению с предварительным напряжением.
Из проволочной
арматуры на заводах изготовляют
арматурные изделия. Для предварительно-
напряженных конструкций используют
стальные арматурные канаты классов
К-7, К-19, а так же многорядные. К проволочным
арматурным изделиям относятся также
арматурные пучки. Пучок образуется из
прямых проволок или прядей, в большинстве
случаев расположенных по окружности,
закрепленных по концам в специальных
анкерах.
Какие факторы определяют модуль упругости бетона В25 и бетонов других классов
На величину модуля упругости влияют следующие факторы:
- характеристики наполнителя. Величина показателя прямо пропорциональна удельному весу бетона. При небольшой плотности значение модуля упругости меньше, чем у тяжелых мелкозернистых стройматериалов, содержащих плотный гравийный или щебеночной наполнитель;
- классификация бетона. Каждый класс бетона по прочности имеет свое значение модуля упругости. С возрастанием класса бетона одновременно увеличивается значение модуля упругости. Начальное значение модуля упругости бетона класса В10 составляет 19, а для бетона В30 равно 32,5;
- возраст монолита. Величина параметра, характеризующего упругость материала и продолжительность эксплуатации, связаны прямым соотношением. Оно не имеет предела пропорциональности – с увеличением возраста бетона возрастает крепость бетонной структуры. Используя существующие таблицы, специалисты определяют искомую величину с учетом поправочных коэффициентов;
- технологические особенности изготовления бетона. Технологией производства бетона предусмотрена обработка при атмосферном давлении и возможность застывания стройматериала в естественных условиях, а также в автоклавах под воздействием повышенного давления и высокой температуры. Условия, при которых твердел бетон, влияют на показатель;
- продолжительность нахождения бетона под нагрузкой. Расчет модуля упругого сопротивления производится путем умножения табличного значения на корректирующий коэффициент. Для ячеистых бетонов с пористой структурой величина составляет 0,7; для плотного бетона – 0,85;
Модуль упругости бетона разных классов
- концентрация влаги в воздушной среде. В зависимости от влажности воздуха изменяется концентрация влаги в бетоне, что влияет на его способность воспринимать предельные нагрузки. Температура окружающей среды также влияет на значение модуля упругости;
- наличие пространственной решетки, изготовленной из арматурных прутков. Армирование повышает способность бетонного массива сопротивляться разрушающим деформациям и воспринимать действующие нагрузки. Расчетное сопротивление для арматуры указано в нормативных документах.
Для усиления используйте арматуру повышенного класса. Не забывайте, что значение нормативного сопротивления для арматуры класса A6 выше, чем величина сопротивления для арматуры класса А1.