Модуль юнга

Содержание:

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где изменение длины тела вследствие сжатия или растяжения, F сила, приложенная к телу и вызывающая деформацию (сила упругости), k коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

, но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график. Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться. На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства. При еще большем сжатии происходит слипание витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

Способы определения модуля упругости

Определить модуль упругости можно двумя способами:

  • механическим, для него используются образцы;
  • ультразвуковым, при котором не происходит разрушение образцов.

Механический способ

Механическое испытание проводят согласно стандарту СП 24452-80.

ФОТО: pinterest.co.ukМеханическое испытание бетона на прочность

Материалы и инструменты

Для испытания принимаются квадратные или круглые образцы, их соотношение между высотой и шириной (сечением) должно быть равно четырём. Изделия сериями по 3 штуки выпиливают или вырезают из готовых конструкций либо отливают в формах согласно стандарту 10180-78. После этого их помещают под влажную материю до начала испытаний.

Испытания проводят на специальном оборудовании – прессе, состоящем из приборов, размещённых под разными направлениями по отношению к граням образца бетона. К рамкам из металла или опорным вставкам прикреплены индикаторы, измеряющие уровень деформации.

ФОТО: tdzhil.ruДля испытаний нужна определённая партия образцовФОТО: masterabetona.ruПресс для проведения испытаний

Схема испытания образцов

Испытания проводят по такой схеме:

  1. К бетонным заготовкам крепят приборы.
  2. Образцы помещают на пресс-платформу, совмещая центр основания с осью заготовки.
  3. Выставляют базовую нагрузку.
  4. Усилие увеличивают до 45% от базового.
  5. Если пресс не запрограммирован под такую нагрузку, приборы снимают и продолжают испытания с постоянной скоростью.
  6. В таблицу заносят результаты испытаний всех заготовок при нагрузке 30% от разрушающей.

По результатам испытаний можно определить начальный модуль упругости. Показатель характеризует свойства бетона под воздействием нагрузки, при которой начинают происходить изменения.

ФОТО: mosstroylab.ruСдвиг и разрушение заготовки

На видео представлен механический способ испытания образцов:

Watch this video on YouTube

Ультразвуковое исследование

Особенность ультразвукового испытания в том, что это неразрушимый способ. Его проводят при повышенных показателях влажности. Исследования выполняют специальным прибором и методом сквозного или поверхностного продольного и поперечного сканирования. Данные о прохождении звуковой волны и её скорости заносят в таблицу для анализа.

ФОТО: poznaibeton.ruУльтразвуковое исследование позволяет работать с готовыми конструкциямиФОТО: tolkobeton.ruУльтразвуковой способФОТО: ardies.ruИсследование образцов

Коэффициент запаса прочности

Для количественного выражения запаса прочности при конструировании применяют коэффициент запаса прочности. Он характеризует способность изделия к перегрузкам выше номинальных. Для бытовых изделий он невелик, но для ответственных узлов и деталей, могущих при разрушении представлять опасность для жизни и здоровья человека, его делают многократным.

Запас прочности

Точный расчет прочностных характеристик позволяет создать достаточный для безопасности запас прочности и одновременно не перетяжелить конструкцию, ухудшая ее эксплуатационные характеристики. Для таких расчетов используются сложные математические методы и совершенное программное обеспечение. Наиболее важные конструкции обсчитывают на суперкомпьютерах.

Расчет поперечной жесткости

В форме точного выражения модуль Юнга рассчитывается таким способом: Е=q / е=tga.

Необходимо также упомянуть и о таком моменте, что модуль Юнга представляет собой еще и коэффициент пропорциональности и был применен в математическом описании закона Гука. Там великим ученым он был указан в таком математическом выражении: Q=Eе.

В связи с этим прямая связь модуля продольной эластичности с вымеряемыми параметрами поперечных разрезов материалов, которые участвуют в тестированиях на твердость, обнаруживается посредством таких выражений, как ЕА и Е1. При этом:

  • ЕА обозначает степень жесткости при сжатии или растяжении вещества или строительного материала в поперечнике;
  • показатель A — величину площади стержневого разреза;
  • Е1 — это показатель твердости при сгибании материи в ее поперечном сечении;
  • индекс 1 обозначает осевой фактор инерции, возникающий в разрезе тестируемого материала.

Из всего этого можно понять, что модуль Юнга представляет собой универсальную величину, благодаря которой появляется возможность разносторонне и с высокой точностью вычислять и охарактеризовывать качественные характеристики и параметры различных материалов.

Таблица показателей упругости материалов

Перед тем, как перейти непосредственно к этой характеристике стали, рассмотрим для начала, в качестве примера и дополнительной информации, таблицу, содержащую данные об этой величине по отношению к другим материалам. Данные измеряются в МПа.

Модуль упругости различных материалов

Как можно заметить из представленной выше таблицы, это значение является разным для разных материалов, к тому же показателя разнятся, если учитывать тот или иной вариант вычисления этого показателя. Каждый волен выбирать именно тот вариант изучения показателей, который больше подойдёт ему. Предпочтительнее, возможно, считать модуль Юнга, так как он чаще применяется именно для характеристики того или иного материала в этом отношении.

После того как мы кратко ознакомились с данными этой характеристики других материалов, перейдём непосредственно к характеристике отдельно стали.

Для начала обратимся к сухим цифрам и выведем различные показатели этой характеристики для разных видов сталей и стальных конструкций:

  • Модуль упругости (Е) для литья, горячекатанной арматуры из сталей марок, именуемых Ст.3 и Ст. 5 равняется 2,1*106 кг/см^2.
  • Для таких сталей как 25Г2С и 30ХГ2С это значение равно 2*106 кг/см^2.
  • Для проволоки периодического профиля и холоднотянутой круглой проволоки, существует такое значение упругости, равняющееся 1,8*106 кг/см^2. Для холодно-сплющенной арматуры показатели аналогичны.
  • Для прядей и пучков высокопрочной проволоки значение равняется 2·10 6 кГ/см^2
  • Для стальных спиральных канатов и канатов с металлическим сердечником значение равняется 1,5·10 4 кГ/см^2, в то время как для тросов с сердечником органическим это значение не превышает1,3·10 6 кГ/см^2 .
  • Модуль сдвига (G) для прокатной стали равен 8,4·10 6 кГ/см^2 .
  • И напоследок коэффициент Пуассона для стали равен значению 0,3

Это общие данные, приведённые для видов стали и стальных изделий. Каждая величина была высчитано согласно всем физическим правилам и с учётом всех имеющихся отношений, которые используются для выведения величин этой характеристики.

Ниже будет приведена вся общая информация об этой характеристике стали. Значения будут даваться как по модулю Юнга, так и по модулю сдвига, как в одних единицах измерения (МПа), так и в других (кг/см2, ньютон*м2).

Сталь и несколько разных её марок

Материал Показатели модуля упругости (Е, G; Н*м2, кг/см^2, МПа)
Сталь 20,6*10^10 ньютон*метр^2
Сталь углеродистая Е=(2,0…2,1)*10^5 МПа; G=(8,0…8,1)*10^4 МПа
Сталь 45 Е=2,0*10^5 МПа; G=0,8*10^5 МПа
Сталь 3 Е=2,1*10^5 МПа; G=0,8*10^5 МПа
Сталь легированная Е=(2,1…2,2)*10^5 МПа; G=(8,0…8,1)*10^4 МПа

Значения показателей упругости стали разнятся, так как существуют сразу несколько модулей, которые исчисляются и высчитываются по-разному. Можно заметить тот факт, что в принципе сильно показатели не разнятся, что свидетельствует в пользу разных исследований упругости различных материалов. Но сильно углубляться во все вычисления, формулы и значения не стоит, так как достаточно выбрать определённое значение упругости, чтобы уже в дальнейшем ориентироваться на него.

Кстати, если не выражать все значения числовыми отношениями, а взять сразу и посчитать полностью, то эта характеристика стали будет равна: Е=200000 МПа или Е=2 039 000 кг/см^2.

Данная информация поможет разобраться с самим понятием модуля упругости, а также ознакомиться с основными значения данной характеристики для стали, стальных изделий, а также для нескольких других материалов.

Следует помнить, что показатели модуля упругости разные для различных сплавов стали и для различных стальных конструкций, которые содержат в своём составе и другие соединения. Но даже в таких условиях, можно заметить тот факт, что различаются показатели ненамного. Величина модуля упругости стали практически зависит от структуры. а также от содержания углерода. Способ горячей или холодной обработки стали также не может сильно повлиять на этот показатель.

Способы определения и контроля показателей прочности металлов

Развитие металлургии и других сопутствующих направлений по изготовлению предметов из металла обязано созданию оружия. Сначала научились выплавлять цветные металлы, но прочность изделий была относительно невысокой. Только с появлением железа и его сплавов началось изучение их свойств.

Первые мечи для придания им твердости и прочности делали довольно тяжелыми. Воинам приходилось брать их в обе руки, чтобы управляться с ними.

Со временем появились новые сплавы, разрабатывались технологии производства. Легкие сабли и шпаги пришли на замену тяжеловесному оружию. Параллельно создавались орудия труда.

С повышением прочностных характеристик совершенствовались инструменты и способы производства.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.

Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.

Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.

Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.

Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

В середине XVII века одновременно в нескольких странах начались исследования материалов. Предлагались самые разные методики по определению прочностных характеристик. Английский исследователь Роберт Гук (1660 г.) сформулировал основные положения закона по удлинению упругих тел в результате приложения нагрузки (закона Гука). Введены и понятия:

  1. Напряжения σ, которое в механике измеряется в виде нагрузки, приложенной к определенной площади (кгс/см², Н/м², Па).
  2. Модуля упругости Е, который определяет способность твердого тела деформироваться под действием нагружения (приложения силы в заданном направлении). Единицы измерения также определяются в кгс/см² (Н/м², Па).

Формула по закону Гука записывается в виде ε = σz/E, где:

  • ε – относительное удлинение;
  • σz – нормальное напряжение.

Демонстрация закона Гука для упругих тел:

Из приведенной зависимости выводится значение Е для определенного материала опытным путем, Е = σz/ε.

Модуль упругости – это постоянная величина, характеризующая сопротивление тела и его конструкционного материала при нормальной растягивающей или сжимающей нагрузке.

В теории прочности принято понятие модуль упругости Юнга. Это английский исследователь дал более конкретное описание способам изменения прочностных показателей при нормальных нагружениях.

Значения модуля упругости для некоторых материалов приведены в таблице 1.

Таблица 1: Модуль упругости для металлов и сплавов

Наименование материала Значение модуля упругости, 10¹²·Па
Алюминий 65…72
Дюралюминий 69…76
Железо, содержание углерода менее 0,08 % 165…186
Латунь 88…99
Медь (Cu, 99 %) 107…110
Никель 200…210
Олово 32…38
Свинец 14…19
Серебро 78…84
Серый чугун 110…130
Сталь 190…210
Стекло 65…72
Титан 112…120
Хром 300…310

Факторы, влияющие на модуль Юнга

Модуль Юнга – это основная характеристика бетона, определяющая его прочность. Благодаря величине проектировщики проводят расчёты устойчивости материала к различным видам нагрузок. На показатель влияют многие факторы:

  • качество и количество заполнителей;
  • класс бетона;
  • влажность и температура воздуха;
  • время воздействия нагрузочных факторов;
  • армирование.

ФОТО: dostroy.comМодуль упругости позволяет проектировщикам правильно рассчитывать нагрузку

Качество и количество заполнителей

Качество бетона зависит от его заполнителей. Если компоненты имеют низкую плотность, соответственно, модуль Юнга будет небольшим. Упругость материала возрастает в несколько раз, если применяются тяжёлые наполнители.

ФОТО: russkaya-banja.ruКрупные компоненты увеличивают характеристики упругости

ФОТО: ivdon.ruГрафик зависимости предела прочности материала от цементного камня

Класс материала

На коэффициент влияет и класс бетона: чем он ниже, тем меньше значение модуля упругости. Например:

  • модуль упругости у В10 соответствует значению 19;
  • В15 – 24;
  • В-20 – 27.5;
  • В25 – 30;
  • показатель у В30 возрастает до значения 32,5.

ФОТО: buildingclub.ruЗависимость от класса бетона

Как влияют на показатель влажность и температурные значения

На рост деформаций и уменьшение упругих свойств материала влияют:

  • повышение температуры воздуха;
  • увеличение солнечной активности.

Под воздействием негативных факторов окружающей среды внутренняя энергия материала увеличивается, это приводит к линейному расширению бетона и соответственно, к увеличению пластичности.

На ползучесть материала оказывает влажность, приводящая к изменению упругих характеристик. Чем выше содержание водяных паров, тем ниже коэффициент.

ФОТО: betonpro100.ruВлияние влажности на ползучесть бетона

Время воздействия нагрузки и условия твердения смеси

На показатель упругости влияет время воздействия нагрузки:

  • при мгновенном усилии на бетонную конструкцию деформативность прямо пропорциональна величине внешней нагрузке;
  • при длительном воздействии значения коэффициента уменьшаются.

Во время проведения исследований было отмечено, если бетон твердеет естественным способом, модуль упругости у него выше в отличие от пропаривания материала в различных условиях. Это объясняется тем, что при использовании внешних условий в бетоне образуются пустоты и поры в большом количестве, ухудшающие его упругие свойства.

ФОТО: udarnik.spb.ruЗависимость модулей упругости от разных факторов

Возраст бетона и армирование конструкции

Прочность бетона находится в прямой зависимости от его возраста, со временем показатель только увеличивается. Ещё один фактор, положительно влияющий на модуль упругости бетона, – армирование, которое препятствует деформации материала.

ФОТО: 63-ds.netsamara.ruДля конструкций, которые будут эксплуатироваться под большими нагрузками, необходима укладка металлической решётки

Механические свойства

Только при работе на растяжение или сжатие модуль (Юнга) упругости помогает угадать поведение того или иного материала. А вот при изгибе, срезе, смятии и прочих нагрузках потребуется ввести дополнительные параметры:

Читать также: Прибор который ищет провода в стене

  1. Жёсткостью называют произведение поперечного сечения профиля на модуль упругости. По этой величине можно судить о пластичности узла конструкции в целом, а не о материале отдельно. Единицей измерения являются килограммы силы.
  2. Продольное относительное удлинение — это отношение абсолютного удлинения материала-образца к его общей длине. К примеру, на стержень, длина которого равна 200 миллиметров, приложили некоторую силу. В результате он стал короче на 5 миллиметров. В результате относительное удлинение будет равняться 0,05. Эта величина безразмерная. Для более удобного восприятия иногда её переводят в проценты.
  3. Поперечное относительное удлинение рассчитывается точно так же, как и продольное относительное удлинение, но вместо длины берут диаметр стержня. Опытным путём было установлено, что для большего количества материала поперечное меньше продольного удлинения приблизительно в 4 раза.
  4. Коэффициент Пуассона. Это отношения относительной продольной к относительной поперечной деформации. При помощи этой величины можно полностью описать под воздействием нагрузки изменения формы.
  5. Модуль сдвига описывает упругие свойства под воздействием касательных свойств на образец. Иными словами, когда вектор силы направляется к поверхности тела под 90 градусов. Примером подобных нагрузок служит работа гвоздей на смятие, заклёпок на срез и пр. Этот параметр связан с вязкостью материала.
  6. Модуль упругости объёмной характеризует изменение объёма образца для разностороннего равномерного приложения нагрузки. Эта величина является отношением давления объёмного к деформации сжатия объёмной. Как пример можно рассматривать опущенный в воду материал, на который воздействует давление жидкости по всей его площади.

Кроме всего вышесказанного стоит упомянуть, что у некоторых материалов в зависимости от направления нагрузки разные механические свойства. Подобные материалы называются анизотропными. Примерами подобного является ткани, некоторые виды камня, слоистые пластмассы, древесина и прочее.

У материалов изотропных механические свойства и деформация упругая в любом направлении одинаковы. К таким материалам относятся металлы: алюминий, медь, чугун, сталь и прочее, а также каучук, бетон, естественные камни, пластмассы неслоистые.

Растяжение.

Соотношение между напряжением и деформацией для материалов часто исследуют, проводя испытания на растяжение, и при этом получают диаграмму растяжения – график, по горизонтальной оси которого откладывается деформация, а по вертикальной – напряжение (рис. 1). Хотя при растяжении поперечное сечение образца уменьшается (а длина увеличивается), напряжение обычно вычисляют, относя силу к исходной площади поперечного сечения, а не к уменьшенной, которая давала бы истинное напряжение. При малых деформациях это не имеет особого значения, но при больших может приводить к заметной разнице. На рис. 1 представлены кривые деформация – напряжение для двух материалов с неодинаковой пластичностью. (Пластичность – это способность материала удлиняться без разрушения, но и без возврата к первоначальной форме после снятия нагрузки.) Начальный линейный участок как той, так и другой кривой заканчивается в точке предела текучести, где начинается пластическое течение. Для менее пластичного материала высшая точка диаграммы, его предел прочности на растяжение, соответствует разрушению. Для более пластичного материала предел прочности на растяжение достигается тогда, когда скорость уменьшения поперечного сечения при деформировании становится больше скорости деформационного упрочнения. На этой стадии в ходе испытания начинается образование «шейки» (локальное ускоренное уменьшение поперечного сечения). Хотя способность образца выдерживать нагрузку уменьшается, материал в шейке продолжает упрочняться. Испытание заканчивается разрывом шейки.

Типичные значения величин, характеризующих прочность на растяжение ряда металлов и сплавов, представлены в табл. 2. Нетрудно видеть, что эти значения для одного и того же материала могут сильно различаться в зависимости от обработки. Таблица 2

Таблица 2
Металлы и сплавы Состояние Предел текучести, МПа Предел прочности на растяжение, МПа Удлинение, %
Малоуглеродистая сталь (0,2% С) Горячекатанная 300 450 35
Среднеуглеродистая сталь (0,4% С, 0,5% Mn) Упрочненная и отпущенная 450 700 21
Высокопрочная сталь (0,4% С, 1,0% Mn, 1,5% Si, 2,0% Cr, 0,5% Мo) Упрочненная и отпущенная 1750 2300 11
Серый чугун После литья 175–300 0,4
Алюминий технически чистый Отожженный 35 90 45
Алюминий технически чистый Деформационно-упрочненный 150 170 15
Алюминиевый сплав (4,5% Cu, 1,5% Mg, 0,6% Mn) Упрочненный старением 360 500 13
Латунь листовая (70% Cu, 30% Zn) Полностью отожженная 80 300 66
Латунь листовая (70% Cu, 30% Zn) Деформационно-упрочненная 500 530 8
Вольфрам, проволока Тянутая до диаметра 0,63 мм 2200 2300 2,5
Свинец После литья 0,006 12 30

Допускаемое механическое напряжение в некоторых материалах при растяжении

Из жизненного опыта известно, что разные материалы по-разному сопротивляются изменению формы. Прочностные характеристики кристаллических и других твердых тел определяются силами межатомного взаимодействия. По мере роста межатомных расстояний возрастают и силы, притягивающие атомы друг к другу. Эти силы достигают максимума при определенной величине напряжения, равной приблизительно одной десятой от модуля Юнга.

Испытание на растяжение

Эту величину называют теоретической прочностью, при ее превышении начинается разрушение материала. В реальности разрушение начинается при меньших значениях, поскольку строение реальных образцов неоднородно. Это вызывает неравномерное распределение напряжений, и разрушение начинается с тех участков, где напряжения максимальны.

Значения σраст в МПа:

Материалы σраст  
Бор 5700 0,083
Графит 2390 0,023
Сапфир 1495 0,030
Стальная проволока 415 0,01
Стекловолокно 350 0,034
Конструкционная сталь 60 0,003
Нейлон 48 0,0025

Эти цифры учитываются конструкторами при выборе материала деталей будущего изделия. С их использованием также проводятся прочностные расчеты. Так, например, тросы, используемые для подъемно- транспортных работ, должны иметь десятикратный запас по прочности. Периодически их проверяют, подвешивая груз в десять раз больше, чем паспортная грузоподъемность троса.

Запасы прочности, закладываемые в ответственные конструкции, также многократны.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

σz = F/ES (3)

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

Через касательные напряжения (τz) и угол сдвига (γ):

G = τz/γ (4)

Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

G = E/2(1+υ) (5)

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh3(ƒ21) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.


Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

λ = νE / (1+ν)(1-2ν) (8)

μ = E / 2(1+ν) (9)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector